Font Size: a A A

Macropore flow and soil hydraulic properties as affected by manure/biosolids injector implements under variable soil physical conditions

Posted on:2006-05-24Degree:M.ScType:Thesis
University:University of Ottawa (Canada)Candidate:Turpin, KarineFull Text:PDF
GTID:2453390008960266Subject:Geology
Abstract/Summary:
The aim of this study was to investigate, at various soil water contents, the tillage effects of two different types of injectors on soil hydraulic properties of a loamy clay soil located in Winchester, Ontario, Canada. The two injectors considered are the AerWay SSD (A) and the Kongskilde Vibro-Flex (K). The soil-properties changes associated with the injectors were assessed at ten different soil water contents for both injectors.; The first part of this research involves the evaluation of field saturated hydraulic conductivity (Kfs), matrix flux potential (&phis;m), bulk density (rhob) and volumetric water content (theta) for undisturbed soil (U) and for soil disturbed by injector (D). The field saturated hydraulic conductivities measured on disturbed soil for the Kongskilde (DK) were in 80% of the cases lower than those measured on undisturbed soil (UK). In contrast, Kfs measured on disturbed soil for the AerWay (DA) were higher in 90% of the cases. These results indicate that the Kongskilde reduces the infiltration capacity of the soil, which may be the result of reduced effective porosity via the smearing of the soil surface. They also indicate that the AerWay is facilitating infiltration, most likely by fracturing the soil surface.; The second part of this study involves a dye tracer experiment conducted on disturbed soil to evaluate the movement pathways of water through soil. In contrast to the AerWay, no relation could be established between liquid transport variables and the water content at which the Kongskilde was run. Greatest depths of penetration observed for the AerWay treatment occurred at run average water contents above 29.7 % vol. and below 19.7 % vol. Sorptive capacity of the upper layers was maximized when soil water contents were between 21.7 % vol. and 31.3 % vol.
Keywords/Search Tags:Soil, Hydraulic, Vol
Related items