Font Size: a A A

Novel systems for the functional characterization of genes related to paclitaxel metabolism in Taxus cell cultures

Posted on:2012-06-07Degree:Ph.DType:Thesis
University:University of Massachusetts AmherstCandidate:Vongpaseuth, KhamkeoFull Text:PDF
GTID:2453390011457118Subject:Biology
Abstract/Summary:
Human society has benefited greatly from plant secondary metabolites, often utilizing a variety of compounds as dyes, food additives, and drugs. In particular, pharmaceutical development has benefited greatly from plant secondary metabolites. One example of this utility is paclitaxel, a highly substituted diterpene approved in the treatment of breast cancer, ovarian cancer, non-small cell lung cancer, and the AIDS-related Kaposi's sarcoma. Demand of paclitaxel is likely to increase, due to the current examination of paclitaxel in numerous clinical trials against a variety of other cancers.;Taxus cell culture represents a production source of paclitaxel to meet future demand. However, paclitaxel production through Taxus cell culture is often variable and low. Targeted metabolic engineering of Taxus to produce superior paclitaxel-accumulating lines is a viable strategy to address variable and low yields. To facilitate the production of genetically engineered Taxus cell lines, stable transformation is required to examine the long-term effect of gene expression in vitro. Additionally, suitable transient transformation systems are necessary to characterize novel Taxus genes related to paclitaxel accumulation.;A transient particle bombardment-mediated transformation protocol was developed to introduce transgenes into Taxus cells in vitro. Additionally, agroinfiltration in Nicotiana benthamiana was examined as a system to express genes related to paclitaxel biosynthesis and lead to the accumulation of the first dedicated taxane, taxa-4(5), 11(12)-diene. In regard to stable transformation, an Agrobacterium -mediated transformation protocol was developed, though this method requires further optimization for reliability and increased transformation efficiency. These transformation technologies will aid in the creation of elite paclitaxel-accumulating Taxus cell lines.
Keywords/Search Tags:Taxus cell, Paclitaxel, Genes related, Transformation
Related items