Font Size: a A A

Development of Cy5.5-Labeled Hydrophobically Modified Glycol Chitosan Nanoparticles for Protein Delivery

Posted on:2014-06-01Degree:M.SType:Thesis
University:State University of New York at Stony BrookCandidate:Chin, AmandaFull Text:PDF
GTID:2454390005488944Subject:Engineering
Abstract/Summary:
Therapeutic proteins are often highly susceptible to enzymatic degradation, thus restricting their in vivo stability. To overcome this limitation, delivery systems designed to promote uptake and reduce degradation kinetics have undergone a rapid shift from macro-scale systems to nanomaterial based carriers. Many of these nanomaterials, however, elicit immune responses and may have cytotoxic effects both in vitro and in vivo. The naturally derived polysaccharide chitosan has emerged as a promising biodegradable material and has been utilized for many biomedical applications; nevertheless, its function is often constrained by poor solubility. Glycol chitosan, a derivative of chitosan, can be hydrophobically modified to impart amphiphilic properties that enable the self-assembly into nanoparticles in aqueous media at neutral pH. This nanoparticle system has shown initial success as a therapeutic agent in several model cell culture systems, but little is known about its stability against enzymatic degradation. Therefore, the goal of this research was to investigate the resistance of hydrophobically modified glycol chitosan against enzyme-catalyzed degradation using an in vivo simulated system containing lysozyme. To synthesize the nanoparticles, hydrophobic cholanic acid was first covalently conjugated to glycol chitosan using of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Conjugates were purified by dialysis, lyophilized, and ultra-sonicated to form nanoparticles. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of 5β-cholanic acid to the glycol chitosan. Particle size and stability over time were determined with dynamic light scattering (DLS), and particle morphology was evaluated by transmission electron microscopy (TEM). The average diameter of the nanoparticles was approximately 200 nm, which remained stable at 4°C for up to 10 days. Additionally, a near infrared fluorescent (NIRF) dye, Cy5.5, was used to label the glycol chitosan nanoparticles to enable the noninvasive imaging of living cells. A model protein (bovine serum albumin, BSA) was encapsulated within the glycol chitosan nanoparticles, and its loading efficiency was calculated to be 88%. Release profile of the BSA showed that only 4% (cumulative mass) was achieved by day 7. Minimal cytotoxicity was observed after delivery of the chitosan vehicle alone. To test degradation kinetics, the BSA-loaded nanoparticles were incubated with lysozyme for up to 3 hours and were applied in SDS-PAGE to determine if enzyme-catalyzed degradation triggered premature release of the encapsulated protein. Confocal laser scanning microscopy was used to visualize the spatiotemporal distribution of FITC-BSA-loaded glycol chitosan nanoparticles after delivery to the rat osteosarcoma (ROS17/2.8) and mouse calvaria-derived (MC3T3-E1) cells.
Keywords/Search Tags:Glycol chitosan, Delivery, Hydrophobically modified, Protein, Degradation
Related items