Font Size: a A A

Distributed data fusion across multiple hard and soft mobile sensor platforms

Posted on:2013-05-09Degree:Ph.DType:Thesis
University:The Pennsylvania State UniversityCandidate:Sinsley, GregoryFull Text:PDF
GTID:2458390008970381Subject:Engineering
Abstract/Summary:PDF Full Text Request
One of the biggest challenges currently facing the robotics field is sensor data fusion. Unmanned robots carry many sophisticated sensors including visual and infrared cameras, radar, laser range finders, chemical sensors, accelerometers, gyros, and global positioning systems. By effectively fusing the data from these sensors, a robot would be able to form a coherent view of its world that could then be used to facilitate both autonomous and intelligent operation. Another distinct fusion problem is that of fusing data from teammates with data from onboard sensors. If an entire team of vehicles has the same worldview they will be able to cooperate much more effectively. Sharing worldviews is made even more difficult if the teammates have different sensor types. The final fusion challenge the robotics field faces is that of fusing data gathered by robots with data gathered by human teammates (soft sensors). Humans sense the world completely differently from robots, which makes this problem particularly difficult. The advantage of fusing data from humans is that it makes more information available to the entire team, thus helping each agent to make the best possible decisions.;This thesis presents a system for fusing data from multiple unmanned aerial vehicles, unmanned ground vehicles, and human observers. The first issue this thesis addresses is that of centralized data fusion. This is a foundational data fusion issue, which has been very well studied. Important issues in centralized fusion include data association, classification, tracking, and robotics problems. Because these problems are so well studied, this thesis does not make any major contributions in this area, but does review it for completeness. The chapter on centralized fusion concludes with an example unmanned aerial vehicle surveillance problem that demonstrates many of the traditional fusion methods.;The second problem this thesis addresses is that of distributed data fusion. Distributed data fusion is a younger field than centralized fusion. The main issues in distributed fusion that are addressed are distributed classification and distributed tracking. There are several well established methods for performing distributed fusion that are first reviewed. The chapter on distributed fusion concludes with a multiple unmanned vehicle collaborative test involving an unmanned aerial vehicle and an unmanned ground vehicle.;The third issue this thesis addresses is that of soft sensor only data fusion. Soft-only fusion is a newer field than centralized or distributed hard sensor fusion. Because of the novelty of the field, the chapter on soft only fusion contains less background information and instead focuses on some new results in soft sensor data fusion. Specifically, it discusses a novel fuzzy logic based soft sensor data fusion method. This new method is tested using both simulations and field measurements.;The biggest issue addressed in this thesis is that of combined hard and soft fusion. Fusion of hard and soft data is the newest area for research in the data fusion community; therefore, some of the largest theoretical contributions in this thesis are in the chapter on combined hard and soft fusion. This chapter presents a novel combined hard and soft data fusion method based on random set theory, which processes random set data using a particle filter. Furthermore, the particle filter is designed to be distributed across multiple robots and portable computers (used by human observers) so that there is no centralized failure point in the system.;After laying out a theoretical groundwork for hard and soft sensor data fusion the thesis presents practical applications for hard and soft sensor data fusion in simulation. Through a series of three progressively more difficult simulations, some important hard and soft sensor data fusion capabilities are demonstrated. The first simulation demonstrates fusing data from a single soft sensor and a single hard sensor in order to track a car that could be driving normally or erratically. The second simulation adds the extra complication of classifying the type of target to the simulation. The third simulation uses multiple hard and soft sensors, with a limited field of view, to track a moving target and classify it as a friend, foe, or neutral.;The final chapter builds on the work done in previous chapters by performing a field test of the algorithms for hard and soft sensor data fusion. The test utilizes an unmanned aerial vehicle, an unmanned ground vehicle, and a human observer with a laptop. The test is designed to mimic a collaborative human and robot search and rescue problem. This test makes some of the most important practical contributions of the thesis by showing that the algorithms that have been developed for hard and soft sensor data fusion are capable of running in real time on relatively simple hardware.
Keywords/Search Tags:Data fusion, Sensor, Hard and soft, Unmanned, Field, Multiple, Thesis, Robots
PDF Full Text Request
Related items