Font Size: a A A

Synthesis of new nanocrystal materials

Posted on:2017-07-05Degree:Ph.DType:Thesis
University:University of Toronto (Canada)Candidate:Hassan, Yasser Hassan Abd El-FattahFull Text:PDF
GTID:2461390014973021Subject:Materials science
Abstract/Summary:
Colloidal semiconductor nanocrystals (NCs) have sparked great excitement in the scientific community in last two decades. NCs are useful for both fundamental research and technical applications in various fields owing to their size and shape-dependent properties and their potentially inexpensive and excellent chemical processability. These NCs are versatile fluorescence probes with unique optical properties, including tunable luminescence, high extinction coefficient, broad absorption with narrow photoluminescence, and photobleaching resistance. In the past few years, a lot of attention has been given to nanotechnology based on using these materials as building blocks to design light harvesting assemblies. For instant, the pioneering applications of NCs are light-emitting diodes, lasers, and photovoltaic devices.;Synthesis of the colloidal stable semiconductor NCs using the wet method of the pyrolysis of organometallic and chalcogenide precursors, known as hot-injection approach, is the chart-topping preparation method in term of high quality and monodisperse sized NCs. The advancement in the synthesis of these artificial materials is the core step toward their applications in a broad range of technologies.;This dissertation focuses on exploring various innovative and novel synthetic methods of different types of colloidal nanocrystals, both inorganic semiconductors NCs, also known as quantum dots (QDs), and organic-inorganic metal halide-perovskite materials, known as perovskites. The work presented in this thesis focuses on pursuing fundamental understanding of the synthesis, material properties, photophysics, and spectroscopy of these nanostructured semiconductor materials.;This thesis contains 6 chapters and conclusions. Chapters 1?3 focus on introducing theories and background of the materials being synthesized in the thesis. Chapter 4 demonstrates our synthesis of colloidal linker--free TiO2/CdSe NRs heterostructures with CdSe QDs grown in the presence of TiO2 NRs using seeded--growth type colloidal injection approach. Chapter 5 explores a novel approach of directly synthesized CdSe NCs with electroactive ligands. The last Chapter focuses on a new class of perovskites. I describe my discovery of a (bottom-up) simple method to synthesize colloidally stable methyl ammonium lead halide perovskite nanocrystals seeded from high quality PbX2 NCs with a pre-targeted size. This chapter reports advances in preparation of both these materials (PbX2, and lead halide perovskite NCs).
Keywords/Search Tags:Ncs, Materials, Synthesis, Colloidal, Chapter
Related items