Font Size: a A A

Nanostructured Extremely Thin Absorber (ETA) Hybrid Solar Cell Fabrication, Optimization, and Characterization

Posted on:2012-08-09Degree:M.SType:Thesis
University:Portland State UniversityCandidate:Lambert, Darcy ErinFull Text:PDF
GTID:2462390011966089Subject:Engineering
Abstract/Summary:
Traditional sources of electrical energy are finite and can produce significant pollution. Solar cells produce clean energy from incident sunlight, and will be an important part of our energy future. A new nanostructured extremely thin absorber solar cell with 0.98% power conversion efficiency and maximum external quantum efficiency of 61% at 650 nm has been fabricated and characterized. This solar cell is composed of a fluorine-doped tin oxide base layer, n-type aluminum doped zinc oxide nanowires, a cadmium selenide absorber layer, poly(3-hexylthiophene) as a p-type layer, and thermally evaporated gold as a back contact. Zinc oxide nanowire electrodeposition has been investigated for different electrical environments, and the role of a zinc oxide thin film layer has been established. Cadmium selenide nanoparticles have been produced and optimized in-house and compared to commercially produced nanoparticles. Argon plasma cleaning has been investigated as a method to improve electronic behavior at cadmium selenide interfaces. The thermal anneal process for cadmium selenide nanoparticles has been studied, and a laser anneal process has been investigated. It has been found that the most efficient solar cells in this study are produced with a zinc oxide thin film, zinc oxide nanowires grown under constant -1V bias between the substrate material and the anode, cadmium selenide nanoparticles purchased commercially and annealed for 24 hours in the presence of cadmium chloride, and high molecular weight poly(3-hexylthiophene) spin-coated in a nitrogen environment.
Keywords/Search Tags:Solar cell, Cadmium, Thin, Zinc oxide, Absorber
Related items