Font Size: a A A

Effects of rare earth metal substituents on the high power piezoelectric properties in lead zirconate titanate-lead (antimony,manganese)O(3) ceramics

Posted on:2004-01-27Degree:Ph.DType:Thesis
University:The Pennsylvania State UniversityCandidate:Gao, YongkangFull Text:PDF
GTID:2462390011976957Subject:Engineering
Abstract/Summary:
Improved piezoelectric materials with higher vibrational velocities are needed to meet the demands of advanced high power electromechanical applications. In this thesis, the effects of the rare earth (RE) metal substituents on the vibrational velocity, the piezoelectric properties and polarization behavior of Pb(Zr,Ti)O3-Pb(Sb,Mn)O3 ceramics have been investigated. Under high drive levels, the mechanical quality factor and the vibrational velocity were both significantly improved by RE substitution. For a longitudinal vibrator, driven under the d31 mode, root mean square value (rms value) of vibration velocity as high as 0.9 m/s under an electric field of 10 kV/m (rms value) has been found for Yb-substituted specimens, which is 1.5 times higher than that of base Pb(Zr,Ti)O3-Pb(Sb,Mn)O 3 ceramics.; For most of rare earth substituents investigated in this system, regardless of the species ionic radii, the piezoelectric properties were observed to have combinative "hard" and "soft" characteristics. "Hard" piezoelectrics have higher Qm values, but lower k31 values. On the other hand, "soft" piezoelectrics have lower Qm values, but higher k31 values. The increased mechanical quality factor Qm (typical of "hard" piezoelectrics) and increased electromechanical coupling coefficient k31 (typical of "soft" ones) were both achieved by RE substitution. With increasing rare earth substituent ionic size, there was no absolute proportional relationship between k31/Qm and dopant ionic size observed. Polarization-electric field (P-E) measurements revealed a significant relaxational polarization similar to a "soft" piezoelectric, in addition to an internal dipolar field similar to a "hard" piezoelectric. A possible explanation for the combinative "hardening" and "softening" effects is the coexistence of randomly quenched and mobile defects.; The time dependences after poling of the mechanical quality factor Q m, electromechanical coupling coefficient k31 and dielectric constant K have been investigated for both "soft" and "hard" lead zirconate titanate (PZT) ceramics. A significant increase of Qm with time was observed for "hard" PZTs, however "soft" ones did not exhibit any changes during the same time period. The aging rate after poling was found to be related to the degree of "hard" characteristics. Polarization versus electric field (P-E) measurements of "hard" PZTs revealed the development of a shift of the response along the E axis with time. It is believed that an internal dipolar field develops with time, due to a reorientation of defect dipoles along the direction of spontaneous polarization through oxygen diffusion. (Abstract shortened by UMI.)...
Keywords/Search Tags:Piezoelectric, Rare earth, Mechanical quality factor, Substituents, Effects, Ceramics, Polarization, Higher
Related items