Font Size: a A A

Molecular barcoded plasmid yeast ORF library: Linking bioactive compounds to their cellular targets and mapping dosage suppressor networks

Posted on:2012-03-08Degree:Ph.DType:Thesis
University:University of Toronto (Canada)Candidate:Ho, Cheuk HeiFull Text:PDF
GTID:2463390011965741Subject:Biology
Abstract/Summary:
In this thesis I describe a functional genomics resource in which each yeast gene, with its native promoter and 3â??UTR, is cloned on a uniquely barcoded low-copy vector. We refer to this resource as the Molecular Barcoded Yeast ORF (MoBY-ORF) library 1.0. Each gene carried by MoBY-ORF 1.0 should mimic its native expression and thus is best suited for complementation cloning. The vector backbone of MoBY-ORF 1.0 is compatible with the mating-assisted genetically integrated cloning (MAGIC) system for recombination cloning in bacterial cells, which allows the transfer of the ORF fragment and its barcoded cassette to other vector backbones. Taking advantage of the MAGIC system, we created a multi-copy version of the library, which we refer to as MoBY-ORF 2.0.;I used MoBY-ORF 1.0 to map drug resistant mutants by complementation cloning with a barcode microarray readout. I investigated several drugs with known targets in my proof-of-principle experiments and showed the feasibility of this method. I identified a single mutation that causes resistance to two different natural products, theopalauamide and stichloroside. By doing so, I was able to link these two chemicals to their cellular target, ergosterol. In fact, theopalauamide represents a new class of sterol binding chemical.;I also describe the use of MoBY-ORF 2.0 to clone dosage suppressors of conditional temperature-sensitive mutants. By doing so, and combing our own data with published literature, we showed that dosage suppression interactions often overlap with protein-protein interactions and negative genetic interactions but not positive interactions; however the majority of dosage suppression interactions are unique and thus they represent an unique edge on a global functional interaction map. We also describe the first genome-wide dosage suppressor interaction map of budding yeast.
Keywords/Search Tags:Yeast, Dosage, ORF, Map, Barcoded, Describe, Library
Related items