Font Size: a A A

Investigating non-Markovian dynamics of quantum open systems

Posted on:2016-05-18Degree:Ph.DType:Thesis
University:Stevens Institute of TechnologyCandidate:Chen, YusuiFull Text:PDF
GTID:2470390017474789Subject:Theoretical Physics
Abstract/Summary:
Quantum open system coupled to a non-Markovian environment has recently attracted widespread interest for its important applications in quantum information processing and quantum dissipative systems. New phenomena induced by the non-Markovian environment have been discovered in variety of research areas ranging from quantum optics, quantum decoherence to condensed matter physics. However, the study of the non-Markovian quantum open system is known a difficult problem due to its technical complexity in deriving the fundamental equation of motion and elusive conceptual issues involving non-equilibrium dynamics for a strong coupled environment. The main purpose of this thesis is to introduce several new techniques of solving the quantum open systems including a systematic approach to dealing with non-Markovian master equations from a generic quantum-state diffusion (QSD) equation.;In the first part of this thesis, we briefly introduce the non-Markovian quantum-state diffusion approach, and illustrate some pronounced non-Markovian quantum effects through numerical investigation on a cavity-QED model. Then we extend the non-Markovian QSD theory to an interesting model where the environment has a hierarchical structure, and find out the exact non-Markovian QSD equation of this model system. We observe the generation of quantum entanglement due to the interplay between the non-Markovian environment and the cavity. In the second part, we show an innovative method to obtain the exact non-Markovian master equations for a set of generic quantum open systems based on the corresponding non-Markovian QSD equations. Multiple-qubit systems and multilevel systems are discussed in details as two typical examples. Particularly, we derive the exact master equation for a model consisting of a three-level atom coupled to an optical cavity and controlled by an external laser field. Additionally, we discuss in more general context the mathematical similarity between the multiple-qubit systems and multilevel systems. Based on our systematic method, we also show how to solve different types of models. In the last part, we use Heisenberg equations of motion and quantum trajectory approach to obtain the exact master equation for a quantum harmonic oscillator chains coupled to two finite temperature environments. The derived exact non-Markovian master equation is useful for exploration of quantum transport and quantum coherence dynamics.
Keywords/Search Tags:Quantum, Non-markovian, Environment, Dynamics, Master equation, Physics, Obtain the exact, Coupled
Related items