Font Size: a A A

Active neutron methods for nuclear safeguards applications using Helium-4 gas scintillation detectors

Posted on:2015-03-02Degree:Ph.DType:Thesis
University:University of FloridaCandidate:Lewis, Jason MFull Text:PDF
GTID:2470390020451418Subject:Nuclear engineering
Abstract/Summary:
Active neutron methods use a neutron source to interrogate fissionable material. In this work a 4He gas scintillation fast neutron detection system is used to measure neutrons created by the interrogation. Three new applications of this method are developed: spent nuclear fuel assay, fission rate measurement, and special nuclear material detection.;Three active neutron methods are included in this thesis. First a non-destructive plutonium assay technique called Multispectral Active Neutron Interrogation Analysis is developed. It is based on interrogating fuel with neutrons at several different energies. The induced fission rates at each interrogation energy are compared with results from a neutron transport model of the irradiation geometry in a system of equations to iteratively solve the inverse problem for isotopic composition. The model is shown to converge on the correct composition for a material with 3 different fissionable components, a representative neutron absorber, and any neutron transparent material such as oxygen in a variety of geometries.;Next an experimental fission rate measurement technique is developed using 4He gas scintillation fast neutron detector. Several unique features of this detector allow it to detect and provide energy information on fast neutrons with excellent gamma discrimination efficiency. The detector can measure induced fission rate by energetically differentiating between interrogation neutrons and higher energy fission neutrons. The detector response to a mono-energetic deuterium-deuterium fusion neutron generator and a 252Cf source are compared to examine the difference in detected energy range.;Finally we demonstrate a special nuclear material detection technique by detecting an unambiguous fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium neutron generator and a high pressure 4He gas fast neutron scintillation detector. Energy histograms resulting from this data show the buildup of a detected fission neutron signal at higher energies. This signal path has a direct application to the determination of induced fission rate and the detection of shielded nuclear material in cargo and air containers. It allows for continuous interrogation and detection.
Keywords/Search Tags:Neutron, Gas scintillation, Nuclear, Material, Fission, Detector, Interrogation, Detection
Related items