Font Size: a A A

Starting points for the study of non-Fermi liquid-like properties of FeCrA

Posted on:2018-12-12Degree:Ph.DType:Thesis
University:State University of New York at BinghamtonCandidate:O'Brien, Patrick JamesFull Text:PDF
GTID:2470390020955851Subject:Physics
Abstract/Summary:
FeCrAs exhibits non-Fermi liquid-like behavior because of its odd combination of thermodynamic, transport, and magnetic properties. In particular, the resistivity of FeCrAs is not characteristic of a metal or an insulator and so remains a mystery. In this thesis, we seek a model to describe its properties. In FeCrAs, local moments reside on the Cr sites, and there is some conduction. We study the simplest possible model on the kagome lattice that features local moments and itinerant electrons, the kagome Kondo Lattice Model. We present the phase diagram of this model, which features a host of complex spin orders, one of which is the √3 x √3, the experimentally observed magnetic ground state in FeCrAs. The kagome Kondo Lattice Model, having one itinerant d-orbital band on the kagome lattice, does not fully capture the microscopic physics of FeCrAs. The kagome Kondo Lattice Model also will not de- scribe the mutilation of the Fermi surface. To investigate the microscopic properties, we calculated LDA and LDA+U results. These results and GGA results from another group all exhibit high d-orbital density of states at the Fermi energy as well as low p-orbital density of states at the Fermi energy. The DFT results motivated us to construct a model based on the chemistry and full geometry of the FeCrAs crystal. The model we construct is an effective hopping model consisting of only d-orbital operators that we call the Optimal Overlap Hopping Model (OOHM). We calculate the band structure that results from the OOHM, and this band structure can be compared to ARPES measurements. As an example of how one can use the OOHM, we calculate a dynamic spin structure factor from within the OOHM, and we compare it to neutron scattering data. We consider both the OOHM and the Kondo Lattice Model on the kagome lattice as starting points from which we can launch studies of FeCrAs, and we present the existing theories for FeCrAs on a metallicity spectrum to illustrate the various perspectives from which FeCrAs is studied.
Keywords/Search Tags:Fecras, Fermi, Kagome kondo lattice model, OOHM
Related items