Font Size: a A A

Partial oxidation of methanol to formaldehyde over molybdenum-tin oxide catalysts

Posted on:1993-07-02Degree:M.A.ScType:Thesis
University:University of Ottawa (Canada)Candidate:Zoumot, Rowaida GeorgeFull Text:PDF
GTID:2471390014997682Subject:Engineering
Abstract/Summary:
The vapor phase air oxidation of methanol to formaldehyde was investigated over molybdenum oxide, tin oxide and their mixtures in an integral flow reactor at atmospheric pressure between temperature of 513 and 573 K, a space time of 10-40 hr g-cat/g-mol methanol and a molar ratio of 0.04-0.1 mol CH3OH/mol air. Experiments were done under such conditions that the effects of internal and external heat and mass transfer effects were negligible.;A screening study indicated the optimum catalyst composition to be 50% SnO2 and 50% MoO3, while conversion increased with temperature and W/F selectivity decreased. This catalyst proved to be highly active and selective to formaldehyde production. Selectivity and yield of up to about 100% were obtained at 100% conversion at a temperature of 553 K, a space time (W/F) of 40 g-cat/g-mol methanol per hour and a molar ratio (R) of 0.04 mol CH3 OH/mol air.;The rate expression r=k1P2M 1+k1P2M2k 2PO2 was deduced assuming a steady-state involving two-stage irreversible oxidation-reduction process. It represented the experimental data satisfactorily. Arrhenius plots of the two rate constants gave activation energies of 31.7 and 18.1 kcal/g-mol.;The effects of several process variables, temperature, space time and methanol/air ratio on the conversion of methanol and the selectivity of the catalyst for formaldehyde production were determined. The results indicated that the impact of the process variables on the conversion, selectivity and yield of formaldehyde were in the following decreasing order T > W/F > R.
Keywords/Search Tags:Formaldehyde, Methanol, Oxide, W/F, Catalyst, Conversion, Selectivity
Related items