Font Size: a A A

Model creation and electronic structure calculation of amorphous hydrogenated boron carbide

Posted on:2016-08-27Degree:M.SType:Thesis
University:University of Missouri - Kansas CityCandidate:Belhadj Larbi, MohammedFull Text:PDF
GTID:2471390017477977Subject:Condensed matter physics
Abstract/Summary:
Boron-rich solids are of great interest for many applications, particularly, amorphous hydrogenated boron carbide (a-BC:H) thin films are a leading candidate for numerous applications such as: heterostructure materials, neutron detectors, and photovoltaic energy conversion. Despite this importance, the local structural properties of these materials are not well-known, and very few theoretical studies for this family of disordered solids exist in the literature. In order to optimize this material for its potential applications the structure property relationships need to be discovered. We use a hybrid method in this endeavor---which is to the best of our knowledge the first in the literature---to model and calculate the electronic structure of amorphous hydrogenated boron carbide (a-BC:H). A combination of classical molecular dynamics using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and ab initio quantum mechanical simulations using the Vienna ab initio simulation package (VASP) have been conducted to create geometry optimized models that consist of a disordered hydrogenated twelve-vertex boron carbide icosahedra, with hydrogenated carbon cross-linkers. Then, the density functional theory (DFT) based orthogonalized linear combination of atomic orbitals (OLCAO) method was used to calculate the total and partial density of states (TDOS, PDOS), the complex dielectric function epsilon, and the radial pair distribution function (RPDF). The RPDF data stand as predictions that may be compared with future experimental electron or neutron diffraction data. The electronic structure simulations were not able to demonstrate a band gap of the same nature as that seen in prior experimental work, a general trend of the composition-properties relationship was established. The content of hydrogen and boron was found to be directly proportional to the decrease in the number of available states near the fermi energy, and inversely proportional to the dielectric constant, which is explained by the decrease in network connectivity. The use of an idealized structure for the icosahedra (defects exist in reality), and the use of the local density approximation for the exchange-correlation functional---which tends to underestimate the bandgap---are considered the main reasons for the inability of quantitatively identifying band gap values that match the experiment.
Keywords/Search Tags:Amorphous hydrogenated boron, Boron carbide, Electronic structure
Related items