Font Size: a A A

The Effects of Specimen Geometry and Size on the Dynamic Failure of Aluminum Alloy 2219-T8 Under Impact Loadin

Posted on:2016-02-02Degree:M.EngType:Thesis
University:Howard UniversityCandidate:Bolling, Denzell TamarcusFull Text:PDF
GTID:2471390017480527Subject:Mechanical engineering
Abstract/Summary:
A significant amount of research has been devoted to the characterization of new engineering materials. Searching for new alloys which may improve weight, ultimate strength, or fatigue life are just a few of the reasons why researchers study different materials. In support of that mission this study focuses on the effects of specimen geometry and size on the dynamic failure of AA2219 aluminum alloy subjected to impact loading. Using the Split Hopkinson Pressure Bar (SHPB) system different geometric samples including cubic, rectangular, cylindrical, and frustum samples are loaded at different strain rates ranging from 1000s-1 to 6000s-1. The deformation properties, including the potential for the formation of adiabatic shear bands, of the different geometries are compared. Overall the cubic geometry achieves the highest critical strain and the maximum stress values at low strain rates and the rectangular geometry has the highest critical strain and the maximum stress at high strain rates. The frustum geometry type consistently achieves the lowest the maximum stress value compared to the other geometries under equal strain rates. All sample types clearly indicated susceptibility to strain localization at different locations within the sample geometry. Micrograph analysis indicated that adiabatic shear band geometry was influenced by sample geometry, and that specimens with a circular cross section are more susceptible to shear band formation than specimens with a rectangular cross section.
Keywords/Search Tags:Geometry, Strain rates
Related items