Font Size: a A A

Discrete element method based scale-up model for material synthesis using ball milling

Posted on:2015-12-30Degree:Ph.DType:Thesis
University:New Jersey Institute of TechnologyCandidate:Santhanam, Priya RadhiFull Text:PDF
GTID:2471390017497742Subject:Chemical Engineering
Abstract/Summary:
Mechanical milling is a widely used technique for powder processing in various areas. In this work, a scale-up model for describing this ball milling process is developed. The thesis is a combination of experimental and modeling efforts.; With an objective of obtaining real-time indicators of milling progress, power, torque, and rotation speed of the impeller of an attritor mill are measured during preparation of metal matrix composite powders in the subsequent portion of this thesis. Two material systems are selected and comparisons made between in-situ parameters and experimental milling progress indicators. It is established that real-time measurements can certainly be used to describe milling progress. However, they need to be interpreted carefully depending on hardness of brittle component relative to milling media.;To improve the DEM model of the attritor mill, it is desired to avoid the removal of unrealistic, high-force events using an approach that would not predict such events in the first place. It is observed that during experiments in attritor, balls may jam causing an increased resistance to the impeller's rotation. The impeller may instantaneously slow down, quickly returning to its pre-set rotation rate. Previous DEM models did not account for such rapid changes in the impeller's rotation. In this work, this relationship between impeller's torque and rotation rate is obtained experimentally and introduced in DEM. As a result, predicted Ed, are shown to correlate well with the experimental data.;Finally, a methodology is proposed combining an experiment and its DEM description enabling one to identify the appropriate interaction parameters for powder systems. The experiment uses a miniature vibrating hopper and can be applied to characterize the powder flow for variety of materials. The hopper is designed to hold up to 20,000 particles of 50-mum diameter, which can be directly described in DEM. Based on comparison of discharge rate from experiments and model, all 6 interaction parameters were analyzed and the ideal conditions identified for Zirconia beads. The values of these parameters for powders are generally not the same as those established for macroscopic bodies. In addition, effects of some other experimental parameters such as particle size distribution and amplitude of vibration are also investigated.;Initially, Discrete Element Model (DEM) is used to describe energy transfer from milling tools to the milled powder for shaker, planetary, and attritor mills. The rolling and static friction coefficients are determined experimentally. Computations predict a quasisteady rate of energy dissipation, E d, for each experimental configuration. It is proposed that the milling dose defined as a product of Ed and milling time, t, divided by the mass of milled powder, mp characterizes the milling progress independently of the milling device or milling conditions used. Once the milling dose is determined for one experimental configuration, it can be used to predict the milling time required to prepare the same material in any milling configuration, for which Ed is calculated. The concept is validated experimentally for DEM describing planetary and shaker mills. For attritor, the predicted Ed includes substantial contribution from milling tool interaction events with abnormally high forces (>103 N). The energy in such events is likely dissipated to heat or plastically deform milling tools rather than refine material. Indeed, DEM predictions for the attritor correlate with experiments when such events are ignored in the analysis.
Keywords/Search Tags:Milling, DEM, Model, Material, Such events, Attritor, Powder, Used
Related items