Font Size: a A A

Characterization of Structural Defects in Wide Band-Gap Compound Materials for Semiconductor and Opto-Electronic Applications

Posted on:2017-01-26Degree:Ph.DType:Thesis
University:State University of New York at Stony BrookCandidate:Goue, Ouloide YannickFull Text:PDF
GTID:2471390017959335Subject:Materials science
Abstract/Summary:
Single crystals of binary and ternary compounds are touted to replace silicon for specialized applications in the semiconductor industry. However, the relative high density of structural defects in those crystals has hampered the performance of devices built on them. In order to enhance the performance of those devices, structurally perfect single crystals must be grown. The aim of this thesis is to investigate the interplay between crystal growth process and crystal quality as well as structural defect types and transport property. To this end, the thesis is divided into two parts.;The first part provides a general review of the theory of crystal growth (chapter I), an introduction to the materials being investigated (chapter II and III) and the characterization techniques being used (chapter IV).;• In chapter I, a brief description of the theory of crystal growth is provided with an eye towards the driving force behind crystal nucleation and growth along with the kinetic factors affecting crystal growth. The case of crystal growth of silicon carbide (SiC) by physical vapor transport (PVT) and chemical vapor deposition (CVD) is discussed. The Bridgman, travelling heater method (THM) and physical transport growth of cadmium zinc telluride (CZT) is also treated. In chapters II and III, we introduce the compound materials being investigated in this study. While a description of their crystal structure and properties is provided, the issues associated with their growth are discussed. In chapter IV, a description of the characterization techniques used in these studies is presented. These techniques are synchrotron X-ray topography (SXRT), transmission electron microscopy, transmission infrared microscopy (TIM), micro-Raman spectroscopy (muRS) and light microscopy. Extensive treatment of SXRT technique is also provided.;In the second part, the experimental results obtained in the course of these studies are presented and discussed. These results are divided into three subsections.;• The development of a new technique for the production of large and high quality silicon carbide single crystal boule is proposed. This technique herein referred to as Large Tapered Crystal (LTC) growth consists of two steps: growth of long SiC rod crystal by solvent-laser heated floating zone (Solvent-LHFZ) and lateral expansion of a seed by hot wall chemical vapor deposition (HWCVD). Solvent-LHFZ was successful as SiC rod crystals, replicating the polytype structure of the starting seed, were achieved at a growth rate varying from 4 to 100mum/hr. However, SXRT revealed the presence of an inhomogeneous strain in the grown crystal rod. This was further confirmed by SEM images, which showed the platelet-like morphology of the growth front with pockets in which iron (Fe)-rich material from the Fe solvent is trapped. It was furthermore observed that at high Fe to Si ratio (∼1.9), no growth was achieved. HWCVD enlargement was also successful as SiC boules, replicating the polytype structure of the starting seed, were achieved at growth rate of about 180mum/hr. The boules had a faceted hexagonal morphology with a strain-free surface marked by steps. Combination of SXRT, TEM and muRS revealed the presence of stacking disorder in the seed (3C, 4H and 15R-SiC) that replicated in the homoepitaxial layer. The formation of the observed stacking disorder is attributed to the low energy difference between stacking configurations on the growth surface as proposed by Takahashi and Ohtani.;• The influence of structural defect type and distribution on minority carrier lifetime in 4H-SiC epilayers was investigated. Structural defect type and distribution map was obtained using SXRT, whereas minority carrier lifetime map was obtained using muPCD. Decrease in carrier lifetime observed from muPCD map was associated with specific structural defects such as low angle grain boundaries (LAGBs), stacking faults (SFs), interfacial dislocations (IDs), half loop arrays (HLAs) as well as basal plane dislocations (BPDs) pinned at TSDs. While the effect of morphological defects was mitigated, combination of defects such as microcracks, overlapping triangular defects and BPD half loops were observed to reduce carrier lifetime. Furthermore, regions of high dislocation density were associated with low carrier lifetime.;• Finally, the effect of cadmium (Cd) overpressure on the quality of cadmium zinc telluride crystal ingots was investigated for two set of samples (set 1 and 2). Overall, high resistivity single crystals were achieved. Evaluation of the crystal quality by SXRT revealed that under certain Cd overpressures and growth conditions, the quality of the grown boule improved. Similarly, transmission infrared (IR) microscopy showed a correlation between the size/density and distribution of Te inclusions/precipitates and Cd overpressure. The size of Te inclusions was observed to decrease as a function of Cd overpressure as predicted from partial pressure data for stoichiometric melt. The best improvement in crystalline quality were observed for samples from set 1at a Cd reservoir of 785 °C and for set 2 samples for a Cd reservoir at 825 °C. This difference in Cd reservoir temperature for stoichiometric growth between set 1 and set 2 was attributed to other factors such as rate of cooling of Cd reservoir, rate of cooling of the crystal along with control of the melt interface. The summary of these results and the implication of this growth approach for producing high quality CZT single crystals are discussed.
Keywords/Search Tags:Crystal, Growth, Structural defects, Quality, SXRT, Carrier lifetime, Characterization, Cd reservoir
Related items