Font Size: a A A

Inorganic membranes for carbon capture and power generation

Posted on:2016-08-13Degree:Ph.DType:Thesis
University:The Ohio State UniversityCandidate:Snider, Matthew TFull Text:PDF
GTID:2471390017976665Subject:Materials science
Abstract/Summary:
Inorganic membranes are under consideration for cost-effective reductions of carbon emissions from coal-fired power plants, both in the capture of pollutants post-firing and in the direct electrochemical conversion of coal-derived fuels for improved plant efficiency. The suitability of inorganic membrane materials for these purposes stems as much from thermal and chemical stability in coal plant operating conditions as from high performance in gas separations and power generation.;Hydrophilic, micro-porous zeolite membrane structures are attractive for separating CO2 from N2 in gaseous waste streams due to the attraction of CO2 to the membrane surface and micropore walls that gives the advantage to CO2 transport. Recent studies have indicated that retention of the templating agent used in zeolite synthesis can further block N2 from the micropore interior and significantly improve CO2/N2 selectivity. However, the role of the templating agent in micro-porous transport has not been well investigated.;In this work, gas sorption studies were conducted by high-pressure thermo-gravimetric analysis on Zeolite Y membrane materials to quantify the effect of the templating agent on CO2, N2, and H2O adsorption/desorption, as well as to examine the effect of humidification on overall membrane performance. In equilibrium conditions, the N2 sorption enthalpy was nearly unchanged by the presence of the templating agent, but the N2 pore occupation was reduced ∼1000x. Thus, the steric nature of the blocking of N2 from the micropores by the templating agent was confirmed. CO2 and H2O sorption enthalpies were similarly unaffected by the templating agent, and the micropore occupations were only reduced as much as the void volume taken up by the templating agent. Thus, the steric blocking effect did not occur for molecules more strongly attracted to the micropore walls. Additionally, in time-transient measurements the CO 2 and H2O mobilities were significantly enhanced by the presence of the templating agent. This meant that small restrictions in the micropores were beneficial to the transport of molecules with some attraction to the micropore walls. Further evidence of this effect were discovered in transport studies on Zeolite Y membranes, in which small amounts of residual water were observed to enhance the CO2 permeance in a similar way as the templating agent in the powder. However, the effect was only observed for dry CO 2 streams and previously humidified membranes. H2O affinity for the zeolite framework was so high and mobility in the micropores was so low that even 0.8 mol% H2O included in the gas stream was enough to reduce CO2 transport by 100x. This poses a serious concern for carbon capture by zeolite Y membrane in coal-fired power plants: the waste stream must be dehumidified first.;In the long-term, raising the efficiencies of fossil-fuel power plants is preferable to post-combustion capture for cost- and resource-effective carbon emissions reduction. Supplementing combustion of the fuel with electrochemical conversion by solid oxide fuel cell (SOFC) shows promise in this effort. Thin-film (<1microm thick) SOFCs have recently exhibited power densities at low temperature (LT) that rival those of thick-film, high-temperature designs, with improved stability and quick ramp times. Low operating temperatures also provide the potential for fast, high-volume production, but so far high-performing LT-SOFCs have all been made by micro-fabrication methods.;In this work, thin-film LT-SOFC modules were fabricated by colloidal processing and their performance was demonstrated. Nano-particulate colloid syntheses, dip-coating, and rapid thermal processing methods yielded fine-particle membrane microstructures, with high porosity and conductivity in the platinum/gadolinium-doped ceria (GDC) composite electrodes and density in the yttria-stabilized zirconia (YSZ) electrolytes. Power densities of >1000 W/m2 at 450°C and ∼5000 W/m2 at 600°C were achieved, and the modules ran >100hrs at peak power after 8 thermal cycles. Thus it was demonstrated that high performing LT-SOFCs can be produced with large-scale methods.
Keywords/Search Tags:Power, Membrane, Carbon, Capture, Templating agent, CO2, Effect, H2O
Related items