Font Size: a A A

Perovskite Oxide Thin Film Growth, Characterization, and Stability

Posted on:2016-06-30Degree:M.SType:Thesis
University:University of California, DavisCandidate:Izumi, AndrewFull Text:PDF
GTID:2471390017977973Subject:Materials science
Abstract/Summary:
Studies into a class of materials known as complex oxides have evoked a great deal of interest due to their unique magnetic, ferroelectric, and superconducting properties. In particular, materials with the ABO3 perovskite structure have highly tunable properties because of the high stability of the structure, which allows for large scale doping and strain. This also allows for a large selection of A and B cations and valences, which can further modify the material's electronic structure. Additionally, deposition of these materials as thin films and superlattices through techniques such as pulsed laser deposition (PLD) results in novel properties due to the reduced dimensionality of the material. The novel properties of perovskite oxide heterostructures can be traced to a several sources, including chemical intermixing, strain and defect formation, and electronic reconstruction. The correlations between microstructure and physical properties must be investigated by examining the physical and electronic structure of perovskites in order to understand this class of materials.;Some perovskites can undergo phase changes due to temperature, electrical fields, and magnetic fields. In this work we investigated Nd0.5Sr 0.5MnO3 (NSMO), which undergoes a first order magnetic and electronic transition at T=158K in bulk form. Above this temperature NSMO is a ferromagnetic metal, but transitions into an antiferromagnetic insulator as the temperature is decreased. This rapid transition has interesting potential in memory devices. However, when NSMO is deposited on (001)-oriented SrTiO 3 (STO) or (001)-oriented (LaAlO3)0.3-(Sr 2AlTaO6)0.7 (LSAT) substrates, this transition is lost. It has been reported in the literature that depositing NSMO on (110)-oriented STO allows for the transition to reemerge due to the partial epitaxial growth, where the NSMO film is strained along the [001] surface axis and partially relaxed along the [11¯0] surface axis. This allows the NSMO film enough freedom of movement to undergo a shear strain along the [11¯0] axes, allowing the NSMO film to switch phases. It was found that the desired magnetic and electrical properties were closely tied to the structural properties, which were highly sensitive to the precise growth conditions.;These perovskite oxides can be further geometrically constrained by patterning, resulting in additional novel magnetic and electrical properties. One such method of patterning involves implanting Ar into a film to locally destabilize the ordered perovskite structure, therefore suppress the magnetic and electrical properties. However, to fully integrate this technique into devices which require multi-planar processes, the ability for a patterned perovskite film to withstand high temperature anneals is crucial in creating more advanced structures. The stability of Ar-implanted La0.7Sr0.3MnO 3 (LSMO) thin films was studied upon annealing at 400°C, 500°C, and 600°C. The LSMO retained its amorphous structure with little ferromagnetism after a 400°C anneal, but anneals at 500°C and 600°C resulted in partial recrystallization and a return of the ferromagnetic properties. This recrystallized film displayed semiconducting properties with a lower Curie temperature than the as deposited film. The deposition of an La 0.7Sr0.3FeO3 (LSFO) film onto an Ar implanted LSMO film at 400°C caused the LSMO film to almost fully recrystallize, suggesting that the deposition process also recrystallizes the Ar-implanted film.;In conclusion, two perovskites films were explored in this thesis. NSMO films proved to be very sensitive to growth conditions, and Ar-implanted LSMO films quickly recrystallized past 400°C or a subsequent film deposition. These studies provide useful information on the structural and electronic transformations these films go through during heat treatment and strain engineering.
Keywords/Search Tags:Film, Perovskite, NSMO, Growth, Electronic, LSMO, Thin, Materials
Related items