Font Size: a A A

Phenolic resin-based porous carbons for adsorption and energy storage applications

Posted on:2015-07-08Degree:Ph.DType:Thesis
University:Kent State UniversityCandidate:Wickramaratne, Nilantha PFull Text:PDF
GTID:2471390017992407Subject:Chemistry
Abstract/Summary:
The main objective of this dissertation research is to develop phenolic resin based carbon materials for range of applications by soft-templating and Stober-like synthesis strategies. Applications Studied in this dissertation are adsorption of CO2, bio-molecular and heavy metal ions, and energy storage devices. Based on that, our goal is to design carbon materials with desired pore structure, high surface area, graphitic domains, incorporated metal nanoparticles, and specific organic groups and heteroatoms. In this dissertation the organic-organic self-assembly of phenolic resins and triblock copolymers under acidic conditions will be used to obtain mesoporous carbons/carbon composites and Stober-like synthesis involving phenolic resins under basic condition will be used to prepare polymer/carbon particles and their composites. The structure of this dissertation consists of an introductory chapter (Chapter 1) discussing the general synthesis of carbon materials, particularly the soft-templating strategy and Stober-like carbon synthesis. Also, Chapter 1 includes a brief outline of applications namely adsorption of CO2, biomolecule and heavy metal ions, and supercapacitors.;Chapter 2 discusses the techniques used for characterization of the carbon materials studied. This chapter starts with nitrogen adsorption analysis, which is used to measure the specific surface area, pore volume, distribution of pore sizes, and pore width. In addition to nitrogen adsorption, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution thermogravimetric analysis (HR-TGA), cyclic voltammetry (CV) and CHNS elemental analysis (EA) are mentioned too.;Chapter 3 is focused on carbon materials for CO2 adsorption. There are different types of porous solid materials such as silicate, MOFs, carbons, and zeolites studied for CO2 adsorption. However, the carbon based materials are considered to be the best candidates for CO 2 adsorption to the industrial point of view. So far, carbons with high surface area and nitrogen content have been vastly studied. Also, there are several reports showing the importance of pore size towards CO2 adsorption at ambient conditions. In the case of nitrogen containing carbons, it was shown that the incorporation of nitrogen into carbon matrix is a challenging task. In chapter 3, we discussed how to improve the surface area and pore size distribution of phenolic resin-based carbons to obtain optimum CO 2 adsorption capacities at ambient conditions. The chemical and physical activation of polymer/carbon particles is used to generate necessary physical properties of the final carbons, which display unprecedented CO2 adsorption capacities at ambient conditions. Moreover, the modified Stober-like methods are used for the synthesis of nitrogen containing carbon particles. These facile synthesis methods afford highly porous nitrogen containing carbons with comparatively high CO2 adsorption capacities at ambient conditions.;Chapter 4 begins with synthesis of ultra large mesoporous carbons using (ethylene oxide)38 (butylene oxide)46 (ethylene oxide) 38 triblock copolymer as a soft template and phenolic resins as the carbon precursors. Even though, there are many reports dealing with the synthesis of mesoporous silica with large pores for bio-molucular adsorption their high cost discourage them to use in industrial applications. However, cheap mesoporous carbons with large pores (>15 nm) are potential materials for bio-molecular adsorption on large scale. The first part of chapter 4 is demonstrates the synthesis of mesoporous carbons with ultra large pores for bio-molecular adsorption. Lysozyme was selected as a model biomolecule for adsorption processes. The second part of Chapter 4 is focused on functionalized polymer spheres for heavy metal ions adsorption. It is shown that the synthesis of functionalized polymer spheres can be achieved by using modified Stober method; the reacting spheres show very high Cu2+ ion adsorption capacities.;Next, Chapter 5 is devoted to carbon materials for supercapacitors. There are mainly two types of electrochemical capacitors namely EDLC and pseudocapacitors. In EDLC, the energy is stored due to electrochemical attraction between electrode and electrolyte interface. To store more ionic charges on to the carbon electrode, it is essential to have high surface area carbon materials. In the case of pseudocapacitors, the energy is stored due to the redox reaction taking place at the electrode and electrolyte interface. Moreover, conductivity of the electrode is also important for the construction of superior electrode materials. To address these vital issues, the electrode materials has been prepared with special emphasis on the enhancement of their surface area to attract more charges at the electrode-electrolyte interface, introducing graphitic moieties to the carbon matrix to improve the conductivity and doping carbons with metal/heteroatoms to improve both capacitance through pseudocapacitive and conductivity.
Keywords/Search Tags:Carbon, Adsorption, Phenolic, Applications, Surface area, Energy, Chapter, Synthesis
Related items