Font Size: a A A

Growth mechanism of surface roughed platinum nanowires through electrodeposition current control and their electrochemical applications

Posted on:2015-10-10Degree:M.SType:Thesis
University:University of Massachusetts LowellCandidate:Ruan, DajiangFull Text:PDF
GTID:2471390017997946Subject:Engineering
Abstract/Summary:
The aim of this work is to investigate the effect of current density on the grain size and surface morphology of electrodeposited platinum nanowires and their applications. Platinum (Pt) nanowires were fabricated by a galvanostatic electrodeposition method in a porous anodic alumina oxide (AAO) template with different current densities. Both direct current and pulse current electrodeposition were used to synthesize the Pt nanowires. The grain size and surface morphology of the Pt nanowires were studied by field emission scanning electron microscopy (FE-SEM), transmission electron microcopy (TEM) and X-ray diffraction (XRD). The experimental results showed that the current density was the key factor to control the surface roughness. The surface of the Pt nanowires became rougher and the grain sizes were increased by increasing the current densities. From the experimental results, a growth mechanism of Pt nanowires based on progressive nucleation and crystallization was proposed in order to find out the relationship between the surface morphology and current density.;The electrochemical properties and catalytic activities of these surface roughed Pt nanowires were investigated in the detection of H20 2 and for the methanol oxidation. Cyclic voltammograms of Pt nanowire modified electrodes were obtained using a potentiostat, which showed that rougher Pt nanowires have higher response and better activity than that of smooth nanowires. For H202 detection, the effect of scan rate and H202 concentration were studied and it was found that the peak current for hydrogen peroxide reduction became larger with the increasing of either scan rate or H202 concentration. It can be inferred that the process of electrocatalytic hydrogen peroxide reduction may be controlled by diffusion of hydrogen peroxide and the Pt nanowire modified glassy carbon electrode (GCE) is well suited for the detection of H202. From the relationship between the peak current and square root of scan rates for methanol oxidation, it can be inferred that the process of electrocatalytic methanol oxidation was controlled by diffusion of methanol. To understand the effect of the morphological feature on the electrocatalytic activity of the Pt nanowire catalysts, the electrochemically active surface area (ECSA) as a function of deposited current density was investigated, which suggests that Pt nanowire catalysts deposited at highest current density had the most ECSA surface morphology of the Pt nanowires. The chronoamperometric curves and electrochemical impedance spectroscopy (EIS) results confirmed that the Pt nanowire catalyst synthesized at higher current density possessed longer durability and gave more efficient electrochemical performance.
Keywords/Search Tags:Current, Surface, Nanowires, Electrochemical, Electrodeposition, Platinum, H202
Related items