Font Size: a A A

Improving the durability of methanol oxidation reaction electro-catalysts through the modification of carbon architectures

Posted on:2015-04-02Degree:Ph.DType:Thesis
University:Colorado School of MinesCandidate:Wood, Kevin NFull Text:PDF
GTID:2471390020450615Subject:Engineering
Abstract/Summary:
Carbon materials represent one of the largest areas of studied research today, having integrated applications stretching from energy production and storage to medical use and far beyond. One of these many intriguing applications is fuel cells, which offers the promise of clean electricity through a direct electrochemical energy conversion process. Unfortunately, at the present time the cost per watt-hour produced by fuel cells is more expensive than conventional methods of energy production/storage (i.e. combustion engines, batteries, etc.). Under the umbrella of fuel cell systems, methanol is a promising fuel source because of its high energy density and convenience of direct liquid fuel operation. In this field, recent advancements are bringing direct methanol fuel cells (DMFCs) closer to commercial viability. However, just as in other fuel cell systems, further improvements are greatly needed, particularly in the area of catalyst durability. This need for improved durability has led to increased research activity focused on improving catalyst stability and utilization.;This thesis explores one of the most promising areas of enhancing catalyst-support interactions; namely, modification of carbon support architectures. Through the use of heteroatom modifiers, such as nitrogen, fuel cell support systems can be enhanced in such a way as to improve metal nucleation and growth, catalyst durability and catalytic activity. To this end, this thesis employs advanced characterization techniques to study the changes in catalyst particle morphology before and after nitrogen modification of the support structure. These results clearly show the beneficial effects of nitrogen moieties on carbon structures and help elucidate the effects of nitrogen on the stability of supported catalytic nanoparticles systems. Similarly, the novel concept of post-modifying commercially available supported catalysts with nitrogen ion implantation gives further insight into the behavior of modified support structures. This result shows a method by which current industry leading benchmarks can be improved, in some cases by up to 100%. This thesis also explores the intriguing prospect of heteroatom modification beyond the effects of just nitrogen. Specifically, the consequences of halide functionalization are explored and shown to significantly improve durability, even to a greater extent than nitrogen modification. In total these results give great promise for the future of fuel cell technology and the field of carbon modification in general.;While the techniques and results presented in this thesis are employed to study durability in direct methanol fuel cells, the benefits of heteroatom modified carbon structures can be applied to other polymer electrolyte fuel cells and beyond. Many other devices and applications, including batteries, supercapacitors, hydrogen storage, and even biosensing and drug delivery can benefit from the work discussed within these pages.
Keywords/Search Tags:Carbon, Modification, Durability, Catalyst, Methanol, Fuel, Energy
Related items