Font Size: a A A

Reaction mechanism and thermal stability study on cathode materials for rechargeable lithium ion batteries

Posted on:2016-03-05Degree:Ph.DType:Thesis
University:State University of New York at BinghamtonCandidate:Fang, JinFull Text:PDF
GTID:2472390017983380Subject:Materials science
Abstract/Summary:
Olivine-type lithium iron phosphate has been a very promising cathode material since it was proposed by Padhi in 1997, low-cost, environmental friendly and stable structure ensure the commercialization of LiFePO 4. In LiFePO4, during charge and discharge process, Li ions are transferred between two phases, Li-poor LialphaFePO 4 and Li-rich Li1-betaFePO4, which implies a significant energy barrier for the new phase nucleation and interface growth, contrary to the fast reaction kinetics experimentally observed. The understanding of the lithiation and delithiation mechanism of this material has spurred a lot of research interests. Many theory models have been proposed to explain the reaction mechanism of LiFePO4, among them, the single phase model claims that the reaction goes through a metastable single phase, and the over potential required to form this single phase is about 30mV, so we studied the driving force to transport lithium ions between Lialpha FePO4 and Li1-betaFePO4 phases and compared the particle sizes effect. Experiment results shows that, the nano-sized (30nm) LiFePO4 has wider solid solution range, lower solid solution formation temperature and faster kinetics than normal LiFePO4 (150nm). Also a 20mV over potential was observed in both samples, either after relaxing the FePO4/LiFePO4 system to equilibrium or transport lithium from one side to the other side, the experiment result is corresponding to theoretical calculation; indicates the reaction might go through single-phase reaction mechanism.;The energy and power density of lithium ion battery largely depend on cathode materials. Mn substituted LiFePO4 has a higher voltage than LiFePO4, which results a higher theoretical energy density. Safety issue is one of the most important criterions for batteries, since cathode materials need to maintain stable structure during hundreds of charge and discharge cycles and ranges of application conditions. We have reported that iron-rich compound o-Fe1-yMnyPO4 (0≤y≤0.4) is stable up to 600 °C with particle size above 100 nm particle. And in this work Mn rich olivine phase Fe1-yMnyPO4 is found to be thermally stable up to at least 450 °C with particle size down to below 50 nm, different delithiation methods result in different decomposition routes, electrochemical delithiation results in decreased thermal stability. Moisture exposure appears the most detrimental to the thermal stability of Mn-rich samples.;LiNi0.5Mn1.5O4 has attracted a lot of attentions because the potential is even higher (∼ 4.7 V vs Li +/Li0). However, electrolyte decomposition is quite often observed during electrochemistry cycles due to the high voltage operation window. Spinel LiNi0.5Mn1.5O4 is known as ordered and disordered according to the distribution of cations which relates to the synthesis conditions. Mn and Ni ions distribute either randomly in 16d sites of an Fd3m-space group or ordered in 4a and 12d sites of P4332 space group. During discharge and charge processes, Li ions insert and extract from the structure with the oxidation state of Ni changing between +2 and +4 while Mn remains as Mn4+. So far the correlation between cation distribution and electrochemical performance is still unclear, mostly the disordered samples are observed to have better rate capabilities. In order to study the reaction mechanism, combined XRD and XAS are used to investigate the oxidation state of transition metals and structure change of LiNi0.5Mn1.5O4 during electrochemical cycling, disordered and ordered samples were compared and studied, and both samples show three phases transformation during charge and discharge. However, the samples suffer from severe electrolyte decomposition which has influence on the results. Good spinel samples with nice electrochemistry performance is required, pure spinel samples are obtained by using co-precipitation method, the distribution of transition metal ions can be controlled by controlling the synthesis temperature, and electrolyte plays an important role in the electrochemistry performance of spinel LiNi0.5Mn1.5O 4.
Keywords/Search Tags:Lithium, Reaction mechanism, Cathode, Thermal stability, Charge, Lini0, Spinel, 5mn1
Related items