Font Size: a A A

Assouad Dimension Of A Class Of Generalized Set Defined By Digit Restrictions

Posted on:2021-10-20Degree:MasterType:Thesis
Country:ChinaCandidate:M LuoFull Text:PDF
GTID:2480306107959429Subject:Basic mathematics
Abstract/Summary:PDF Full Text Request
In recent years,more and more researches have been done on the Assouad dimension of sets.The Assouad dimension of some special sets have been studied and calculated by many scholars both at home and abroad.In this paper,we studied a kind of generalized set defined by digit restrictions and calculated its Assouad dimension.The conclusion is as follows:Let Es,(?)is a set defined by digit restrictions and set A.S is a subset of positive integer set N.For any integer m in set N.Set Wm={ω1ω2…ωm:ωk∈{1,2} if k∈S,ωk=1if k(?)S,1≤k≤m}.If word ω=ω1ω2…ωn and v=v1v2…vm,then ω*v=ω1…ωnv1…vm.Define set(?)and the closed subset A={Iω:ω∈W}:(?)I=[0,1]satisfies the following two relations:(1)For any word ω in set Wm,set Iω is geometrically similar to set I,that is,there is a similarity mapping fω:R→R such that Iω=fω(I)and |Iω|=cω|I|.Without loss of generality,set Iφ=I.If word ω=ω1ω2…ωn,then the compression radio cω=cω1cω2…cωn.(2)For any integer m≥0 and any word ω in set Wm,when integer m+1∈S,the subsets Iω*1 and Iω*2 of set Iω are disjoint and |Iω*1|=ci|Iω|,i=1,2;when integer m+1(?)S,we only take the subset Iω*1 and |Iω*1|=c1|Iω|.Let C1 and C2 be the numbers given when the set ES.A is defined,and they are between 0 and 1,let s*be the only real number that satisfies the following equation(?),where(?)is the upper Banach density of set S,then dimAES,A=s*.
Keywords/Search Tags:Assouad dimension, Set defined by digit restrictions, Upper Banach density
PDF Full Text Request
Related items