| Let Fq be a finite field with q elements.(1)Let Dr are the set of all m-order square matrices of rank r on Fq.and S is the set of all m-order skew-symmetric,which define a set of mappings W={σA|σA(X)=Tr(AX),X∈Dr,A∈S},Where Tr represents the trace of the matrix.A linear code is constructed according to the mapping mode of the elements in the set W C(r,m,q)={cA=(Tr(AX1),Tr(AX2),…,Tr(AXt))| A∈S,Xi∈Dr,i=1,…,t},t is equal to the number of elements in our set Dr.In this paper,the second chapter mainly discusses the linear code C(1,m,q),C(2,m,q),C(1,m,q),C(2,m,q)parameters.(2)based on(1),Let F be the set of m × m global symmetric matrices on Fq,and H be m × m global symmetric matrices on IFq.Based on the construction method of C(r,m,q)in Chapter 2,the following four linear codes are constructed:C1(m,q)={cA=(Tr(AX1),Tr(AX2),…,Tr(AXt4))| A∈S,Xi∈S,i=1,…,t4},C2(m,q)={cA=(Tr(AX1),Tr(AX2),…,Tr(AXt5))| A∈F,Xi∈F,i=1,…,t5},C3(m,q)={cA=(Tr(AX1),Tr(AX2),…Tr(AXt6))| A∈H,Xi∈H,i=1,…,t6},C4(m,q)={cA=(Tr(AX1),Tr(AX2),…,Tr(AXt6))| A∈S,Xi∈H,i=1,…,t6}.In this paper,the third chapter mainly discusses the linear code C1(m,q),C2(m,q),C3(m,q),C4(m,q)parameters. |