Font Size: a A A

Nanoscale metal oxide and supported metal catalysts for Li-air battery

Posted on:2014-07-30Degree:Ph.DType:Dissertation
University:Missouri University of Science and TechnologyCandidate:Huang, KanFull Text:PDF
GTID:1451390008952754Subject:Chemical Engineering
Abstract/Summary:PDF Full Text Request
The dissertation work focuses on research and development of durable nanoscale catalysts and supports for rechargeable Li-air batteries that use aqueous catholytes. Transition metal oxides, TiO2 and Nb2 O5 in particular, were prepared from a sol-gel process in the form of nanocoatings (5∼50 nm) on carbon nanotubes (CNTs) and studied as catalyst supports. Carbon doping in the oxides and post annealing significantly increased their electronic conductivity. Pt catalyst on the support with TiO 2 (Pt/c-TiO2/CNTs) showed a much better oxygen reduction reaction (ORR) activity than a commercial Pt on carbon black (Pt/C). Negligible loss (< 3%) in ORR activity was found in Pt/c-TiO2/CNTs as compared to more than 50% loss in Pt/C, demonstrating a significantly improved durability in the developed catalysts. However, Pt/c-Nb2O5/CNTs was found to be worse in ORR activity and durability, suggesting that c-Nb 2O5/CNTs may not be a good support.;CNTs have fibrous shape and would provide a unique porous structure as electrode. Their buckypapers were made and used to support catalysts of Pt and IrO2 in the cathodes of Li-air batteries with sulfuric acid catholyte. At low Pt loading (5 wt.%) without IrO2 on the buckypaper cathode, the Li-air cell achieved a discharging capacity of 306 mAh/g and a specific energy of 1067 Wh/kg at 0.2 mA/cm2. A significant charge overpotential reduction (∼ 0.3 V) was achieved when IrO2 was also used to form a bifunctional catalyst with Pt on the buckypapers. The round trip efficiency was increased from 72% to 81% with the bifunctional cathode, demonstrating a higher energy conversion efficiency.
Keywords/Search Tags:Catalysts, Li-air, Support, Metal
PDF Full Text Request
Related items