Font Size: a A A

Electron transport theory in magnetic nanostructures

Posted on:2002-02-26Degree:Ph.DType:Dissertation
University:University of FloridaCandidate:Choy, Tat-SangFull Text:PDF
GTID:1460390011492045Subject:Physics
Abstract/Summary:
Magnetic nanostructure has been a new trend because of its application in making magnetic sensors, magnetic memories, and magnetic reading heads in hard disks drives. Although a variety of nanostructures have been realized in experiments in recent years by innovative sample growth techniques, the theoretical study of these devices remain a challenge. On one hand, atomic scale modeling is often required for studying the magnetic nanostructures; on the other, these structures often have a dimension on the order of one micrometer, which makes the calculation numerically intensive.; In this work, we have studied the electron transport theory in magnetic nanostructures, with special attention to the giant magnetoresistance (GMR) structure. We have developed a model that includes the details of the band structure and disorder, both of which are both important in obtaining the conductivity. We have also developed an efficient algorithm to compute the conductivity in magnetic nanostructures. The model and the algorithm are general and can be applied to complicated structures. We have applied the theory to current-perpendicular-to-plane GMR structures and the results agree with experiments. Finally, we have searched for the atomic configuration with the highest GMR using the simulated annealing algorithm. This method is computationally intensive because we have to compute the GMR for 103 to 104 configurations. However it is still very efficient because the number of steps it takes to find the maximum is much smaller than the number of all possible GMR structures. We found that ultra-thin NiCu superlattices have surprisingly large GMR even at the moderate disorder in experiments. This finding may be useful in improving the GMR technology.
Keywords/Search Tags:Magnetic, GMR, Theory
Related items