Font Size: a A A

Factors influencing gypsum crystal morphology within a flue gas desulfurization vessel

Posted on:2014-02-19Degree:M.SType:Thesis
University:Mississippi State UniversityCandidate:Lewis, Kinsey MFull Text:PDF
GTID:2451390008958962Subject:Geochemistry
Abstract/Summary:PDF Full Text Request
Flue gas desulfurization (FGD) is utilized by the coal--powered generating industry to safely eliminate sulfur dioxide. A FGD vessel (scrubber) synthetically creates gypsum crystals by combining limestone (CaCO3), SO2 flue gas, water and oxygen resulting in crystalline gypsum (CaSO4 · 2H2O), which can be sold for an economic return. Flat disk--like crystals, opposed to rod--like crystals, are hard to dewater, lowering economic return. The objectives were to investigate the cause of varying morphologies, understand the environment of precipitation, as well as identify correlations between operating conditions and resulting unfavorable gypsum crystal growth. Results show evidence supporting airborne impurities due to the onsite coal pile, the abundance and size of CaCO 3 and high Ca:SO4 ratios within the scrubber as possible factors controlling gypsum crystal morphology. In conclusion, regularly purging the system and incorporating a filter on the air intake valve will provide an economic byproduct avoiding costly landfill deposits.
Keywords/Search Tags:Gypsum crystal, Gas
PDF Full Text Request
Related items