Font Size: a A A

E2 protein cage as a multifunctional nanoplatform

Posted on:2011-10-02Degree:Ph.DType:Dissertation
University:University of California, IrvineCandidate:Dalmau Mallorqui, MerceFull Text:PDF
GTID:1440390002451904Subject:Engineering
Abstract/Summary:
Caged protein systems such as viral capsids, heat shock proteins, and ferritin are spherical structures that occur naturally in living organisms and are a growing class of biomimetic templates used to create new materials in nanotechnology. Such systems have been proposed as general drug carriers since they form highly symmetric nanoscale architectures that offer the potential to be tailored according to the desired application. Within this framework, this dissertation focuses on the design and development of a new drug delivery nanoplatform based on the E2 subunit of the pyruvate dehydrogenase protein from Bacillus stearothermophilus. This scaffold forms a 25-nm nanocapsule structure with a hollow cavity. We produced a variant of this protein consisting only of the structural core, and found the thermostability of this self-assembled scaffold to be unusually high, with an onset unfolding temperature of 81.1 +/- 0.9°C and an apparent midpoint unfolding temperature of 91.4 +/- 1.4°C. To evaluate the potential of this scaffold for encapsulation of guest molecules in the internal cavity, we made variants which altered the physicochemical properties of the hollow internal surface. These mutants, yielding up to 240 mutations within this cavity, assembled into correct architectures and exhibited high thermostability that was also comparable to the wild-type scaffold. To show the applicability of this scaffold we coupled two drug-like small molecules to the internal cavity. We also developed a new strategy for encapsulation of small hydrophobic drug molecules. This method is based on hydrophobic differences between the interior cavity and the external buffer to nucleate drug-like agents inside the protein cage. We demonstrate that internal mutations can introduce non-native functionality and enable molecular encapsulation within the cavity while still retaining the dodecahedral structure. Another surface amenable to modifications is the interface between subunits. Such a region was modified to introduce pH-dependent scaffold disassembly ability to assist drug release upon endocytosis inside the cells. Moreover, we demonstrated that modulation of the pH at which disassembly occurs can be achieved by modulation of electrostatic interactions through mutagenesis or changing ionic strength. Together, these results demonstrate the potential of our scaffold as a robust nanoscale platform for biomedical applications.
Keywords/Search Tags:Protein, Scaffold
Related items