Font Size: a A A

Reynolds stress modeling of separated turbulent flows over helicopters

Posted on:2007-05-23Degree:Ph.DType:Dissertation
University:The Pennsylvania State UniversityCandidate:Alpman, EmreFull Text:PDF
GTID:1440390005460695Subject:Engineering
Abstract/Summary:
A numerical investigation of inviscid and viscous flows around three-dimensional complex bodies is made using unstructured meshes. Inviscid flow solutions around an RAH-66 Comanche helicopter fuselage are performed to analyze the aerodynamics of ducted tail rotors in low-power, near-edgewise flow conditions. A numerical solution of the Euler Equations is obtained for the flow over the Comanche fuselage with a uniform actuator disk and blade element models for the FANTAIL(TM); the main rotor is excluded in this study. The solutions are obtained by running the PUMA2 computational fluid dynamics code with an unstructured grid with 2.8 million tetrahedral cells. PUMA2 is an in-house computer code written in ANSI C++. Excellent correlation between the calculations and a variety of static test data are presented and discussed. The dynamic relationship between the antitorque thrust moment and applied collective pitch angle is studied by changing the pitch angle input by five degrees at a rate of 144 degrees per second. Dynamic fan thrust and moment response to applied collective pitch in hover and forward flight are presented and discussed.; In order to remove the deficiency of the Euler equations in predicting separated flows, which is mostly the case in helicopter fuselage aerodynamics, a concurrent study is performed to simulate turbulent flows around three-dimensional bodies. Most of the turbulence models in the literature contain simplified assumptions which make them computationally cheap but of limited accuracy. Dramatic improvements in the computer processing speed and parallel processing made it possible to use more complete models, such as Reynolds Stress Models, for turbulent flow simulations around complex geometries, which is the focus of this work. The Reynolds Stress Model consists of coupling Reynolds transport equations with the Favre-Reynolds averaged Navier-Stokes equations, which results in a system of 12 coupled nonlinear partial differential equations. The solutions are obtained by running the PUMA_RSM computational fluid dynamics code on unstructured meshes. Results for high Reynolds number flow around a 6:1 prolate spheroid, a sphere and a Bell 214ST fuselage are presented. (Abstract shortened by UMI.)...
Keywords/Search Tags:Flow, Reynolds stress, Turbulent, Fuselage
Related items