Font Size: a A A

Applications of magnetic fields to control fluids in reduced gravity

Posted on:2008-12-14Degree:Ph.DType:Dissertation
University:The University of MemphisCandidate:Simmons, Benjamin DouglasFull Text:PDF
GTID:1440390005974534Subject:Engineering
Abstract/Summary:PDF Full Text Request
Continued exploration of space will face many challenges of technology, time, and human endurance. Development of new technologies or maturation of existing proposed technologies will be crucial to the future of manned space exploration. Society's current dependence on cryogenic liquid fuels for heavy space rocketry and manned space vehicles presents limitations on the scope of planned missions. This work presents the development of a new computational tool that is used to study the effectiveness of a magnetic field when used to control the position of paramagnetic Liquid Oxygen(LOX) in a spacecraft tank under reduced gravity conditions. This tool, Surface Evolver , was selected because of its abilities to predict equilibrium free surface shapes and to complete a simulation in a short time period of minutes to hours, instead of the often weeks required of time accurate software tools.; The development of this tool will be presented through derivation of supporting equations, validation cases, and it will be applied to study problems of varying scale. The derivation of the supporting equations will illustrate the energies of interest to the current study, and also serve as a guide for future energy model development. Validation cases are presented and analyzed for each of the new energy models developed: Potential Energy due to gravitational influence, Energy due to the presence of a fluid within a magnetic field (constant gradient, wire, and dipole magnetic fields), and other models that include Surface Tension and contact angle enforcement at boundaries. This collection of models will be used to study the effect of the direction and magnitude of the gravitational energy vector upon the resulting equilibrium free surface shape of LOX under the influence of a magnetic field. The new computational tool was used to study a range of problems from small scale experiment simulations to full-scale spacecraft applications. Conclusions are drawn as to the effectiveness of the tool to study this range of scale and still return results in a reasonable time period. Recommendations are made for future related research objectives.
Keywords/Search Tags:Magnetic field, Time, Space, Development, New
PDF Full Text Request
Related items