Font Size: a A A

Interfacial engineering of microstructured materials

Posted on:2011-04-05Degree:Ph.DType:Dissertation
University:Auburn UniversityCandidate:Poda, AimeeFull Text:PDF
GTID:1441390002962365Subject:Chemistry
Abstract/Summary:
The tribological behavior of octadecyltrichlorosilane self assembled monolayers (OTS-SAMs) has been successfully exploited to reduce energy losses and to produce adequate adhesion barrier properties on many MEMS surfaces. Unfortunately, performance discrepancies are reported in the literature between films produced on smooth surfaces as compared to typical MEMS surfaces maintaining topographical roughness. Rational explanations in terms of reproducibility issues, production considerations, and the scale of measurement technique have been introduced to account for some of the variation. The tribological phenomena at the micro-scale are complicated by the fact that rather than inertial effects, the forces associated with the surface become dominant factors influencing the mechanical behavior of contacting components. In MEMS, real mechanical contacts typically consist of a few nanometer scale asperities. Furthermore, various surface topographies exist for MEMS device fabrication and their corresponding asperity profiles can vary drastically based on the production process.;This dissertation presents research focusing on the influence of topographical asperities on OTS film properties of relevance for efficient tribological improvement. A fundamental approach has been taken to carefully examine the factors that contribute to high quality film formation, specifically formation temperature and the role of interfacial water layer associated with the sample surface. As evidenced on smooth surfaces, the characteristics for successful tribological performance of OTS films are strongly dependent on the lateral packing density and molecular orientation of the monolayer. Limited information is available on how monolayers associate on topographical asperities and whether these topographical asperities influence the interfacial reactivity of MEMS surfaces. A silica film produced from a low temperature, vapor-phase hydrolysis of tetrachlorosilane with a tunable topography is introduced and leveraged as a novel investigative platform for advanced analytical investigations often restricted to use on smooth surfaces. This tunable surface allows intellectual insight into the nature of surface properties associated with silica surfaces, the uptake of interfacial water and the subsequent influence of surface morphology on OTS film formation. FTIR analysis was utilized for an examination of interfacial properties on both smooth Si(100) surfaces and on the tunable MVD topography in combination with an investigation of OTS film formation mechanism. A dilute etchant technique is developed to provide topographic contrast for AFM imaging to allow direct examination of film packing characteristics in relation to surface asperities. A relationship between monolayer adsorption characteristics and topographical asperities with observed variations in monolayer order resultant from surface roughness has been elucidated. Results show that the packing structure of OTS monolayers is dependent on the local asperity curvature which is qualitatively different from that observed on flat surfaces.;In addition, a difference in surface reactivity is observed as a result of different surface topographies with thicker silica layers maintaining a thicker interfacial water layer resulting in a higher coverage of OTS monolayers at similar reaction times and conditions. This work shows changes in surface reactivity as a consequence of different morphological surface characteristics and preparation procedures. Additional research is presented on a new class of SAM, namely octadecylphoshonic acid and its monolayer formation mechanism and properties are compared to conventional OTS monolayers. This monolayer is translated to investigative probes based on Aluminum oxide specifically tailored for a tribological comparison across multi-scale friction regimes.
Keywords/Search Tags:OTS, Monolayer, Tribological, Interfacial, MEMS surfaces, Topographical asperities
Related items