Font Size: a A A

Anisotropic superconductivity observed by magneto-optical imaging: A case study of yttrium barium copper oxide

Posted on:2007-02-23Degree:Ph.DType:Dissertation
University:University of HoustonCandidate:Wang, ChongFull Text:PDF
GTID:1441390005474571Subject:Physics
Abstract/Summary:
This work studies direct Magneto-Optical Imaging (MOI) as a means to directly observe anisotropic superconductivity using (110)-oriented YBa 2Cu3O7-delta (YBCO) thin film. The MOI technique can translate magnetic field distribution directly into an optical image. It has been used to study supercurrent distribution in a superconducting thin film. A fast Fourier transform method was developed to convert the MO image into maps of current density distribution independent of the underlying models that are used to extract the critical current densities. By using this method, the inhomogeneous critical current distribution can be deduced, and current stream maps can be constructed.;High quality single phase YBCO (110) thin films were fabricated by magnetron sputtering. Characterizations by X-ray diffraction, Rutherford backscattering and channeling, a scanning electron microscope, an atomic force microscope, and electric transport measurement indicates that the (110) films are single-phased, strain-free, highly oxygenated, and have a relatively smooth surface compared to the c-axis oriented counterpart prepared by the same technique.;Direct imaging of the anisotropic magnetic field distribution at the surface of YBCO (110) thin film has been realized, where the unique stripe-like pattern is interpreted as based on the anisotropic critical current density model developed in this work. Geometric effects on anisotropic critical current flow have been examined. The characteristic behaviors of parabola-shaped discontinuity-lines (d-line) in an anisotropic thin film sample are discussed. Calculations of the critical currents at step-edged defects on anisotropic thin-films strip were conducted. The magnetic field pattern derived from the calculation is in good agreement with the stripe pattern of the experiment. Such step-edges are representative of physical imperfections that dictate the presence or absence of the stripe pattern in an anisotropic superconductor.
Keywords/Search Tags:Anisotropic, Imaging, YBCO, Thin film, Critical current, Pattern
Related items