Font Size: a A A

Interactions of polymer surfaces and thin films

Posted on:2008-10-09Degree:Ph.DType:Dissertation
University:University of California, Santa BarbaraCandidate:Zeng, HongboFull Text:PDF
GTID:1441390005951402Subject:Engineering
Abstract/Summary:
Characterization of the adhesion, tribological properties and dynamics of polymer surfaces has been of great interest for many years since polymers are commonly used as adhesive and lubricant coatings to produce both high and low adhesion or friction. Improving our fundamental understanding of the interactions of polymer surfaces at the molecular level is needed to develop further techniques in materials science and chemical engineering.; The objectives of my research were to correlate the nano- and micro-scale properties of various polymer thin film and surface phenomena: adhesion, adhesion hysteresis, friction, lubrication, surface deformations, coalescence, spreading, and wear, and identify the fundamental physical forces and mechanisms at the molecular and micro-scales.; I studied the adhesion of polymer films at temperatures ranging from below to above the glass transition temperature, Tg. The adhesion hysteresis was found to peak somewhere around Tg, but to also depend on the load, contact time and detachment rate. The results revealed some new scaling relations for the dynamic (rate-dependent) adhesion forces and effective surface energies of polymers.; I studied the way polymer surfaces deform during adhesion (coalescence), spreading (wetting) and separation (detachment, rupture, fracture and failure) processes, and characterized the differences (and transition) between liquid-like and solid-like behavior during these processes, e.g., the transition from liquid-to-viscoelastic-to-ductile-to-brittle behavior. Complex and novel transient (dynamic) surface shape changes were found to occur during transitions that involved highly-ordered or disordered fingers, ripples, waves or cracks. A full picture has emerged for the transition from viscous liquid-like to brittle solid-like behavior of adhering and detaching interfaces.; Finally, I developed a new experiment technique whereby an electric field can be applied across the two surfaces in a Surface Force Apparatus for the first time, and two types of experiments were performed to measure the normal and/or lateral forces between two surfaces under an E-field.
Keywords/Search Tags:Surfaces, Adhesion
Related items