Font Size: a A A

Grain Boundary Effects in Solid Oxide Electrolytes

Posted on:2011-06-03Degree:Ph.DType:Dissertation
University:University of California, IrvineCandidate:Ng, MaiFull Text:PDF
GTID:1442390002966664Subject:Chemistry
Abstract/Summary:
Ion conducting ceramics are essential in applications such as solid oxide fuel cells and oxygen sensors. Traditional 8 mol% yttria-stabilized zirconia (8YSZ) solid oxide electrolytes operate at high temperatures (850°C-1000°C) to achieve high ionic conductivity (> 0.1 Scm-1 at 1000°C) by oxygen ion diffusion via vacancies. Operation at such temperatures requires high temperature electrode materials and shortens device lifetime due to interdiffusion and reactions at electrode/electrolyte interfaces. These concerns drive research in current systems and alternative materials to improve ionic conductivity at reduced operating temperatures.;This research considers how grain size and grain boundary phases affect three electrolyte materials with different ion diffusion mechanisms. First, the conductivity of ultra-fine grained two-step sintered and large grained conventional sintered 8YSZ are compared to determine if enhanced ionic conductivity occurs supporting the theory that ion blocking impurities in grain boundaries are diluted with decreasing grain size. Second, apatite-type lanthanide silicates (Ln9.33(SiO4)6O2) which exhibit anisotropic interstitial oxygen diffusion at intermediate temperatures (400°C-800°C) are studied to determine whether grain boundaries detrimentally affect conductivity. Lastly, proton conducting La-monazite (LaPO4) is evaluated to determine the role of Sr-doping (up to 10% substitution of La with Sr) on grain size and conductivity as well as the effect of sintering in air or water vapor on the formation of intergranular phases rich in Sr and P. This research investigates grain boundary effects in three solid oxide electrolyte materials with the goal of understanding how grain boundaries affect ionic conductivity and the atomistic behavior governing these different diffusion mechanisms.
Keywords/Search Tags:Grain, Solid oxide, Ionic conductivity
Related items