Font Size: a A A

Dynamic modeling of gas turbines in integrated gasification fuel cell systems

Posted on:2010-09-18Degree:Ph.DType:Dissertation
University:University of California, IrvineCandidate:Maclay, James DavenportFull Text:PDF
GTID:1442390002975018Subject:Engineering
Abstract/Summary:
Solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems for use in integrated gasification fuel cell (IGFC) systems operating on coal will stretch existing fossil fuel reserves, generate power with less environmental impact, while having a cost of electricity advantage over most competing technologies. However, the dynamic performance of a SOFC-GT in IGFC applications has not been previously studied in detail. Of particular importance is how the turbo-machinery will be designed, controlled and operated in such applications; this is the focus of the current work.;Perturbation and dynamic response analyses using numerical SimulinkRTM models indicate that compressor surge is the predominant concern for safe dynamic turbo-machinery operation while shaft over-speed and excessive turbine inlet temperatures are secondary concerns. Fuel cell temperature gradients and anode-cathode differential pressures were found to be the greatest concerns for safe dynamic fuel cell operation. Two control strategies were compared, that of constant gas turbine shaft speed and constant fuel cell temperature, utilizing a variable speed gas turbine. Neither control strategy could eliminate all vulnerabilities during dynamic operation. Constant fuel cell temperature control ensures safe fuel cell operation, while constant speed control does not. However, compressor surge is more likely with constant fuel cell temperature control than with constant speed control.;Design strategies that provide greater surge margin while utilizing constant fuel cell temperature control include increasing turbine design mass flow and decreasing turbine design inlet pressure, increasing compressor design pressure ratio and decreasing compressor design mass flow, decreasing plenum volume, decreasing shaft moment of inertia, decreasing fuel cell pressure drop, maintaining constant compressor inlet air temperature. However, these strategies in some cases incur an efficiency penalty.;A broad comparison of cycles employing cathode recycle using either an ejector or a blower indicate that the cycles with the blower provide better turbo-machinery stability and higher system efficiencies than the cycles with the ejector.;A comparison of two models controlled to maintain constant fuel cell operating temperatures of 1,100 K and 1,373 K, show similar dynamic performance trends, indicating that the results are applicable to planar and tubular SOFC-GT systems and should apply to other operating temperatures.
Keywords/Search Tags:Fuel cell, Systems, Turbine, SOFC-GT, Dynamic, Gas, Operating
Related items