Font Size: a A A

Development of SOFC anodes resistant to sulfur poisoning and carbon deposition

Posted on:2008-02-13Degree:Ph.DType:Dissertation
University:Georgia Institute of TechnologyCandidate:Choi, Song HoFull Text:PDF
GTID:1442390005958721Subject:Engineering
Abstract/Summary:
The advantages of solid oxide fuel cells (SOFCs) over other types of fuel cells include high energy efficiency and excellent fuel flexibility. In particular, the possibility of direct utilization of fossil fuels and renewable fuels (e.g., bio-fuels) may significantly reduce the cost of SOFC technologies. However, it is known that these types of fuels contain many contaminants that may be detrimental to SOFC performance.;Among the contaminants commonly encountered in readily available fuels, sulfur-containing compounds could dramatically reduce the catalytic activity of Ni-based anodes under SOFC operating conditions. While various desulphurization processes have been developed for the removal of sulfur species to different levels, the process becomes another source of high cost and system complexity in order to achieve low concentration of sulfur species. Thus, the design of sulfur tolerant anode materials is essential to durability and commercialization of SOFCs. Another technical challenge to overcome for direct utilization of hydrocarbon fuels is carbon deposition. Carbon formation on Ni significantly degrades fuel cell performance by covering the electrochemically active sites at the anode. Therefore, the prevention of the carbon deposition is a key technical issue for the direct use of hydrocarbon fuels in a SOFC.;In this research, the surface of a dense Ni-YSZ anode was modified with a thin-film coating of niobium oxide (Nb2O5) in order to understand the mechanism of sulfur tolerance and the behavior of carbon deposition. Results suggest that the niobium oxide was reduced to NbO 2 under operating conditions, which has high electrical conductivity. The NbOx coated dense Ni-YSZ showed sulfur tolerance when exposed to 50 ppm H2S at 700°C over 12 h. Raman spectroscopy and XRD analysis suggest that different phases of NbSx formed on the surface. Further, the DOS (density of state) analysis of NbO2, NbS, and NbS2 indicates that niobium sulfides can be considered as active surface phases in the H2S containing fuels. It was demonstrated that carbon formation was also suppressed with niobium oxide coating on dense Ni-YSZ in humidified CH4 (3% H2O) at 850°C. In particular, under active operating conditions (a current is passing through the cell), there was no observable surface carbon as revealed using Raman spectroscopy due probably to electrochemical oxidation of carbon. Stable performances of functional cells consisting of Pt/YSZ/Nb2O5 coated dense Ni-YSZ in the fuel were achieved; there was no observable degradation in performance due to carbon formation. The results suggest that a niobium oxide coating has prevented carbon from formation on the surface probably by electrochemically oxidation of carbon on niobium oxide coated Ni-YSZ.;On the other hand, computational results suggest that, among the metals studied, Mo seems to be a good candidate for Ni surface modification. Ni-based anodes were modified with Mo using wet-impregnation techniques, and tested in 50 ppm H2S-contaminated fuels. It was found that the Ni-Mo/CeO 2 anodes have better sulfur tolerance than Ni, showing a current transient with slow recovery rather than slow degradation in 50 ppm H2S balanced with H2 at 700°C.
Keywords/Search Tags:SOFC, Carbon, Sulfur, H2S, Oxide, Anodes, Fuel, Dense ni-ysz
Related items