Font Size: a A A

Development of calibration techniques for ultrasonic hydrophone probes in the frequency range from 1 to 100 MHz

Posted on:2008-09-22Degree:Ph.DType:Dissertation
University:Drexel UniversityCandidate:Umchid, SumetFull Text:PDF
GTID:1442390005964461Subject:Engineering
Abstract/Summary:
The primary objective of this research was to develop and optimize the calibration techniques for ultrasonic hydrophone probes used in acoustic field measurements up to 100 MHz. A dependable, 100 MHz calibration method was necessary to examine the behavior of a sub-millimeter spatial resolution fiber optic (FO) sensor and assess the need for such a sensor as an alternative tool for high frequency characterization of ultrasound fields. Also, it was of interest to investigate the feasibility of using FO probes in high intensity fields such as those employed in HIFU (High Intensity Focused Ultrasound) applications. In addition to the development of a novel, 100 MHz calibration technique the innovative elements of this research include implementation of a prototype FO sensor with an active diameter of about 10 hum that exhibits uniform sensitivity over the considered frequency range and does not require any spatial averaging corrections up to about 75 MHz. The calibration technique provided the sensitivity of conventional, finite aperture piezoelectric hydrophone probes as a virtually continuous function of frequency and allowed the verification of the uniformity of the FO sensor frequency response. As anticipated, the overall uncertainty of the calibration was dependent on frequency and determined to be about +/-12% (+/-1 dB) up to 40 MHz, +/-20% (+/-1.5 dB) from 40 to 60 MHz and +/-25% (+/-2 dB) from 60 to 100 MHz. The outcome of this research indicates that once fully developed and calibrated, the combined acousto-optic system will constitute a universal reference tool in the wide, 100 MHz bandwidth.
Keywords/Search Tags:Mhz, Hydrophone probes, Calibration, Frequency
Related items