Font Size: a A A

siRNA-loaded cationic liposomes for cancer therapy: Development, characterization and efficacy evaluation

Posted on:2011-09-28Degree:Ph.DType:Dissertation
University:Northeastern UniversityCandidate:Ying, BoFull Text:PDF
GTID:1444390002452855Subject:Nanotechnology
Abstract/Summary:
Cancer is a major health problem in the United States and many other parts of the world. However, cancer treatment is severely limited by the lack of highly effective cytotoxic agents and selective delivery methods which can serve as the "magic bullet" (first raised by Dr. Paul Ehrlich, the goal of targeting a specific location without causing harm to surrounding tissues or to more distant regions in the body).;The revolutionary finding that tumors cannot grow beyond a microscopic size without dedicated blood supply provided a highly effective alternative for the treatment of cancer. Currently, anti-angiogenic therapy and the discovery of RNA interference makes it possible to treat some conditions by silencing disorder-causing genes of targeting cells which are otherwise difficult to eradicate with more conventional therapies. However, before siRNA technology could be widely used as a therapeutic approach, the construct must be efficiently and safely delivered to target cells. Strategies used for siRNA delivery should minimize uptake by phagocytes, enzymatic degradation by nucleases and should be taken up preferentially, if not specifically, by the intended cell population.;Kinesin spindle proteins (KSP) are the motor proteins which play critical roles during mitosis. Different from tubulins which are also present in post-mitotic cells, such as axons, KSP is exclusively expressed in mitotic cells, which makes them the ideal target for anti-mitotics.;In the present study, we intend to develop, characterize and evaluate a liposome-based delivery system which can deliver KSP siRNA selectively to the tumor vasculature (thus inhibiting angiogenesis, destroying tumor vasculature and eventually, eradicating tumor growth).;We first developed ten different liposome preparation types with different compositions of lipids. Next, the capacity for loading siRNA and efficiency of targeting the tumor vascular supply was evaluated using relevant cellular and tumor models. Pegylated cationic liposomes (PCLs) were selected as carriers for siRNA. Based on the silencing efficiency of siRNA formulated with different PCLs, DOPC based cationic liposomes, over DOPE based nanosystems, with a modest amount of polyetheleneglycol was selected to deliver KSP siRNA to tumor-bearing mice. Efficacy studies revealed that tumor suppression was observed when KSP siRNA was delivered using PCLs, but not in mice that received naked KSP siRNA or KSP siRNA in commercially available transfecting agents. The results were further supported by MRI (magnetic resonance imaging) analysis.;To evaluate the role that vasculature supply plays in the development of the tumor, we also performed tumor response studies using a tumor model consisting of tumor cells which are resistant to KSP siRNA. The results showed that a prolonged suppression of tumor growth was achieved only when a large dose (5mg/kg) KSP siRNA was administered, but not with the administration of a relatively low dose (2mg/kg) of siRNA, suggesting that a combined treatment approach containing both anti-vasculature and anti-cancer agents should be considered to achieve the best treatment outcome.;Finally, it was confirmed by qRT-PCR that the tumor growth inhibition was due to the successful knock-down of KSP mRNA.
Keywords/Search Tags:KSP, Sirna, Tumor, Cationic liposomes, Cancer
Related items