Font Size: a A A

Integrated approach for pollution prevention in process design and decision-making

Posted on:2010-02-17Degree:Ph.DType:Dissertation
University:Memorial University of Newfoundland (Canada)Candidate:Hossain, Khandoker AbulFull Text:PDF
GTID:1445390002486218Subject:Engineering
Abstract/Summary:
Pollution prevention (P2) has gained significant importance over pollution control strategies to manage environmental issues in process industries. P2 reduces the hazardous emissions via mass and energy conservation and thus leads towards sustainable development.;A detailed algorithm has also been developed to carry out structural and parametric optimizations of a process flowsheet. The most important feature of the SusDesign approach is that it uses quantitative techniques to evaluate the environmental and cost performance of design options by imbedding the IECP approach, developed as a part of this work. The IECP tool is integrated with the Aspen HYSYS for quantitative evaluation, screening and optimization of the investigated design options.;The application of the SusDesign approach has been demonstrated through the design of a 30 MW thermal power plant. Compared to the conventional gas turbine power plant, the final design has achieved an improvement of overall thermal efficiency of the plant by about 35% and the reduction of CO 2 and NO emissions by about 49% and 80% respectively.;The applicability of the IECP approach has been demonstrated through a separate case study, where potential NOx reduction options are evaluated in a 125 MW thermal power plant.;The present work has developed a holistic P2 approach to facilitate the successful implementation of the P2 program in process industries. The greater P2 opportunities exist in the preliminary design phase; therefore, to contribute in this area the present research has developed a structured process design approach, SusDesign. It integrates numerous tools, such as exergy and energy analysis, process integration, cogeneration, trigeneration, etc., with a process simulator, Aspen HYSYS. This integration assists the designers to systematically generate and analyze design alternatives at different design stages.;In the final phase of this research, a risk-based environmental assessment approach, E-Green, has been developed for the detailed environmental evaluation of a flowsheet. E-Green has been implemented in combination with the Aspen HYSYS to assess two different solvent options in an acrylic acid manufacturing plant.
Keywords/Search Tags:Process, Aspen HYSYS, Approach, Plant, Environmental, Options
Related items