Font Size: a A A

Advanced Adsorbents for Capture of Vapor-Phase Mercury and Other Toxic Components from Flue Gas

Posted on:2014-08-03Degree:Ph.DType:Dissertation
University:University of CincinnatiCandidate:He, JuanFull Text:PDF
GTID:1451390005490682Subject:Engineering
Abstract/Summary:
During coal combustion, mercury and arsenic are volatized and are present in multiple forms in the gas phase; similarly, the formation of nitrogen oxides in flue gas depends on nitrogen content of the coal and oxygen available to react with nitrogen. New approaches for cost-effective control of mercury and other pollutants are necessary. In this work, a group of room temperature ionic liquid coated nanostructured chelating adsorbents was developed and used for gas-phase mercury and arsenic adsorption; the simultaneous removal of mercury and nitrogen oxide using ceria-modified manganese oxide/titania materials was investigated. Three thermally robust adsorbents, 25 wt% [bmim]Cl coated-MPTS-Si, 25 wt% [bmim]Cl-MPTS-MCF and 25 wt% [bmim]Cl-AmbersepTM GT74 were synthesized and demonstrated to be effective adsorbents for simultaneous capture of oxidized and elemental mercury at 160°C. Mercury from vapor phase dissolves in the [bmim]Cl ionic liquid layer;and subsequently bonds to the chelating ligands of MPTS or directly coordinates with the sulfur-containing groups from AmbersepTM GT74 resin. In fixed-bed adsorption experiments, the 25 wt% [bmim]Cl-MPTS-Si exhibited the largest mercury (Hg2+ and Hg0) capacity in an inert atmosphere. A mathematical model was developed to describe mercury removal based on the experimental data measured at laboratory-scale. To synthesize adsorbents for both mercury and arsenic capture, both [bmim]Cl and an amino acid-based RTIL, [TBP][Tau], were supported on a silica gel with high surface area and accessible mesopores. In both fixed-bed and batch adsorption modes, all of the RTIL-coated silica adsorbents can effectively remove Hg0 and As(III) simultaneously, and exhibited high As(III) capacities. Because of the high solubility of CO2 in the [TBP][Tau] RTIL, the presence of CO2 caused a negative effect on the Hg0 and As(III) adsorption performance of [TBP][Tau]-Si. High surface area ceria-titania materials are used as supports for manganese oxide for both warm-gas mercury capture and low temperature selective catalytic reduction. Remarkably, these materials exhibit high Hg0 adsorption capacities and excellent NO removal performance both in single-component tests and in combined NO and Hg0 removal experiments at 175°C. For the Hg0 adsorption, MnOx/CeO2-TiO2 adsorbents had large Hg0 capacities up to 37 mg g-1. SO2 inhibited Hg0 adsorption on the surface of MnOx, but the CeO2-TiO2 support retained most of its Hg0 capacity in the presence of 100 ppm SO2. The simultaneous capture of Hg0 and Hg2+ at 175°C was observed using CeO2-TiO2 support. Both the NO adsorption and co-adsorption of NO + CO can be found over the surface of MnOx/CeO2-TiO2 materials. The results of XPS analysis suggest that the presence of lattice oxygen play important role on the mercury and NO adsorption, with great formation of HgO and nitrate species; in the presence of CO in the feed gas, mercury adsorption doesn't inhibit the SCR activity of NO. In summary, the nanostructured, RTILs coated chelating adsorbents and manganese supported on ceria-titania oxide materials were successfully developed and studied for removal of gas-phase mercury and other toxic components. The experimental results suggest these novel adsorbents could be technically feasible for multi-pollutants control in coal combustion.
Keywords/Search Tags:Mercury, Adsorbents, Gas, Capture, Coal, Hg0, Adsorption
Related items