Font Size: a A A

Kinetic resolution of racemic mixtures in gel media

Posted on:2006-12-07Degree:Ph.DType:Dissertation
University:Georgetown UniversityCandidate:Petrova, Rositza IordanovaFull Text:PDF
GTID:1451390005492045Subject:Chemistry
Abstract/Summary:
The goal of this research was to investigate the effect of chiral gels on the chiral crystal nucleation and growth and assess the gels' potential as media for kinetic separation of racemic mixtures.; The morphologies of asparagine monohydrate and sodium bromate crystals grown in different gel media were examined in order to discern the effect of gel structure and density on the relative growth rates of those materials. Different crystal habits were observed when the gel chemical composition, density and solute concentration were varied. These studies showed that the physical properties of the gel, such as gel density and pore size, as well as its chemical composition affect the crystal habit.; The method of kinetic resolution in gel media was first applied to sodium chlorate, which is achiral in solution but crystallizes in a chiral space group. Crystallization in agarose gels yielded an enantiomorphic bias, the direction and magnitude of which could be affected by changing the temperature or by the addition of an achiral cosolvent. Aqueous gels at 6°C produced crystalline mixtures enriched with the d-enantiomorph, while crystallization under MeOH diffusion favored l-crystals. Optimized conditions yielded e.e. of 53% of l-enantiomorph.; The method was next applied to the organic molecular crystals of asparagine monohydrate and threonine. Asparagine monohydrate growth in aqueous agarose and iota-carrageenan gels produced crystal mixtures enriched with D-enantiomer. The degree of resolution was higher when the total amount of asparagine crystallized was low. The success of the resolution depends strongly on the concentrations of solute and the geling substance. Growth from agarose gels yielded e.e. of 44% under optimized conditions. The same method was applied to the resolution of Thr, albeit with modest success.; In an effort to improve the resolution of asparagine monohydrate, agarose was synthetically modified by esterifying its side chains with homochiral asparagyl groups and used as a kinetic resolution media. The crystallization from L-Asn-agarose favored crystallization of L-enantiomer (28% e.e.), while D-Asn-agarose favored D-enantiomer (40% e.e.). The degree of resolution was sensitive to the concentrations of the gel and the total amount of crystallized asparagine, but the media was no better than that in pure agarose.
Keywords/Search Tags:Gel, Media, Resolution, Crystal, Asparagine, Mixtures, Agarose, Growth
Related items