Font Size: a A A

Assessment of Population and Microenvironmental Exposure to Fine Particulate Matter (PM2.5)

Posted on:2014-10-27Degree:Ph.DType:Dissertation
University:North Carolina State UniversityCandidate:Jiao, WanFull Text:PDF
GTID:1451390005999486Subject:Engineering
Abstract/Summary:
A positive relationship exists between fine particulate matter (PM 2.5) exposure and adverse health effects. PM2.5 concentration-response functions used in the quantitative risk assessment were based on findings from human epidemiological studies that relied on areawide ambient concentrations as surrogate for actual ambient exposure, which cannot capture the spatial and temporal variability in human exposures. The goal of the study is to assess inter-individual, geographic and seasonal variability in population exposures to inform the interpretation of available epidemiological studies, and to improve the understanding of how exposure-related factors in important exposure microenvironments contribute to the variability in individual PM2.5 exposure. Typically, the largest percentage of time in which an individual is exposed to PM2.5 of ambient origin occurs in indoor residence, and the highest ambient PM2.5 concentrations occur in transportation microenvironments because of the proximity to on-road traffic emissions. Therefore, indoor residence and traffic-related transportation microenvironments were selected for further assessment in the study.;Population distributions of individual daily PM2.5 exposures were estimated for the selected regions and seasons using the Stochastic Human Exposure and Dose Simulation Model for Particulate Matter (SHEDS-PM). For the indoor residence, the current practice by assuming the entire residence to be one large single zone for calculating the indoor residential PM 2.5 concentration was evaluated by applying an indoor air quality model, RISK, to compare indoor PM2.5 concentrations between single-zone and multi-zone scenarios. For the transportation microenvironments, one field data collection focused on in-vehicle microenvironment and was conducted to quantify the variability in the in-vehicle PM2.5 concentration with respect to the outside vehicle concentration for a wide range of conditions that affect intra-vehicle variability in exposure concentration, including ventilation air source, window status, fan setting, AC utilization, vehicle speed, road type, travel direction, and time of day. Another field data collection measured PM2.5 exposure concentrations on pre-selected routes across transportation modes of pedestrian, bus, and car to quantify the variability in the transportation mode concentration ratios, and identify factors affecting variability in traffic-related concentrations.;In general, population daily average exposure to ambient PM2.5 is less than the ambient concentration by approximately half. The ratio of PM2.5 ambient exposure to ambient concentration (Ea/C) varies by individual, geographic area and season, as a result of regional differences in housing stock and seasonal differences in air exchange rates (ACH). For the indoor residence, the single-zone assumption is biased when any non-ambient source is presented. Bias correction factors are developed for cooking and smoking scenarios, separately, to improve the concentration estimates. Correction factors are most sensitive to changes in ACH but relatively insensitive to variations in source emission rate and duration. In a SHEDS-PM case study, the population daily average total exposure increased by 17% after applying correction factors. Transportation mode exposure concentrations are sensitive to mode, and are affected by factors such as vehicle ventilation and proximity to on-road emission sources. The in-vehicle to outside vehicle concentration (I/O) ratio is highly sensitive to whether windows are open or, for closed windows, to whether fresh air or recirculating air is used.;Both model simulations and field studies are needed to inform better understanding of human exposure. Exposure, and not just concentration, should be considered in developing risk management strategies to reduce uncertainty in health effect estimates, and to identify highly exposed groups and possible exposure reduction strategies.
Keywords/Search Tags:Exposure, Pm2, Particulate matter, Concentration, Population, Assessment, Indoor residence, Ambient
Related items