Font Size: a A A

High impact strength polymers having novel nano-structures produced via reactive extrusion

Posted on:2006-10-05Degree:Ph.DType:Dissertation
University:University of FloridaCandidate:Tortorella, Nathan FraserFull Text:PDF
GTID:1451390008457066Subject:Engineering
Abstract/Summary:
A major focus of scientists and engineers over the last century has been to increase the impact strength and therefore reduce the brittleness of materials. By altering and adding energy absorption mechanisms, brittle failure can be averted. Isotactic polypropylene (PP) is the focus of this dissertation because it is an extremely low cost, high volume, versatile plastic but behaves in a brittle manner at or below room temperature or in a notched state. Early work on impact modification of polypropylene focused on blending energy-absorbing low density elastomers and rubbers. These binary blends all had a common problem---an increase in impact strength was paralleled by a significant decrease in both elastic modulus and yield stress.; Reactive extrusion processing has allowed the in-situ compatibilization of isotactic polypropylene and metallocene-catalyzed ethylene-octene copolymers (EOCs). This process involves combining both the comonomer and vector fluid approaches to grafting polyolefins. Styrene monomer and a multifunctional acrylate monomer undergo peroxide-induced copolymerization and grafting in the presence of both PP and EOC. This results in a phase separated alloy with an impact strength over 13 times that of pure polypropylene and double that of the physical blend. There is also a significant improvement in stress-strain performance when comparing the alloys to physical blend counterparts.; Many researchers have categorized the necessary components to toughening polypropylene as pertaining to the amorphous phase. The alloys described in this dissertation meet the criteria put forth by these researchers, namely low density, crystallinity, and modulus of the elastomer phase, sub-micron particle diameter, close inter-particle distance, and a high degree of entanglements of both the PP matrix phase and EOC minor phase. But many people neglect to study the crystalline state of impact modified PP in conjunction with the amorphous phase. This work shows that the typical 10-100 mum diameter spherulitic structures found in pure PP are not present in the alloys. In fact, the spherulites are less than a micron in diameter, are uniformly distributed throughout the sample, and crystallize at much higher temperatures. SEM images, when coupled with DSC and XRD, reveal the presence of a high number of small lamellar crystals composed of a unique highly dense cross-hatched structure. Thus, impact strength and stiffness can be simultaneously improved by controlling the size and cross-hatch density of the lamellar crystals and applying phase transformation toughening concepts.
Keywords/Search Tags:Impact strength, Phase
Related items