Font Size: a A A

Investigation of Low Temperature, Atomic-Layer-Deposited Oxides on 4Hydrigen-Silicon Carbide and their Effect on the Silicon Carbide/Silicon Dioxide Interface

Posted on:2013-01-16Degree:Ph.DType:Dissertation
University:North Carolina State UniversityCandidate:Haney, Sarah KayFull Text:PDF
GTID:1451390008469809Subject:Engineering
Abstract/Summary:
Silicon carbide has long been considered an excellent substrate for high power, high temperature applications. Fabrication of conventional MOSFETs on silicon carbide (SiC) relies on thermal oxidation of the SiC for formation of the silicon dioxide (SiO2) gate oxide. Historically, direct oxidation was viewed favorably due to ease of fabrication. However, the resulting MOS devices have exhibited significant interface trap densities, Dit , which reduce effective inversion layer mobility by capturing free carriers and enhancing scattering. While nitridation has been shown to reduce Dit, the inversion layer electron mobility of these devices is still limited by the presence of carbon near the interface. Studies have suggested a low mobility transition region between the SiC and SiO2, on the SiC side, attributed to increased carbon concentration resulting from the thermal oxidation of the SiC. In this work, we have investigated the low temperature, atomic layer deposition (ALD) of SiO2 onto SiC compared to thermal oxidation of SiC for the fabrication of MOS devices. Avoiding the carbon out diffusion and subsequent carbon build-up resulting from thermal oxidation is expected to result in a superior, higher mobility MOSFET.;A three-step ALD process using 3-aminopropyltriethoxysiliane (3-APTES), ozone and water was evaluated on silicon and SiC substrates. Ellipsometry and XPS were used to characterize blanket films, and showed good results. Capacitors fabricated on SiC showed the need for optimized post deposition anneals. The effect of post oxidation anneals in nitrogen, forming gas and nitric oxide were examined. The standard nitric oxide (NO) anneal that is used to improve Dit after thermal oxidation was also shown to be the best anneal for the low temperature deposited ALD oxides.;Materials characterization of the nitrided ALD and nitrided thermal oxide samples was completed using STEM/EELS techniques in addition to the ellipsometry and XPS. STEM/EELS analysis of the samples revealed no significant difference in transition regions on either side of the SiC/SiO2 interface regardless of oxidation technique or anneal temperature or ambient. All samples analyzed exhibited approximately 2-3nm of transition region on either side of the interface with no evidence of carbon or silicon rich regions. XPS was also used to determine a valence band offset of 2.43eV for the ALD oxide on 4H-SiC.;Lateral MOSFETs were fabricated on 4H-SiC substrates with the following oxidation treatments: thermal oxidation at 1175°C, thermal oxidation at 1175°C followed by a nitric oxide (NO) anneal at 1175°C, and ALD of SiC at 150°C followed by an NO post oxidation anneal (POA) at 1175°C. ALD of the SiO2 was performed using 3-aminopropyltriethoxysiliane (3-APTES), ozone and water. Field effect mobility values were comparable for these samples, suggesting common thermal oxidation steps were still limiting the mobility. As such additional lateral MOSFETs were fabricated without the incoming sacrificial oxidation steps. This sacrificial-oxidation free experiment showed a 15% improvement in peak field effect mobility for the nitrided ALD oxide samples as compared to the nitrided thermal oxides. SIMS of the interfaces revealed nitrogen concentrations of ∼6E21 at/cc in the nitrided ALD sample compared to ∼4-6E20 in the nitrided thermal sample. This extremely high level of nitrogen incorporation, which is unparalleled in NO annealed thermal oxides, is accountable for the increase in field effect mobility. The low deposition temperature of the ALD oxide causes high levels of carbon incorporation and greater number of dangling bonds at the interface. Both the dangling bonds and excess carbon acts as binding sites for the nitrogen, increasing the nitrogen concentration and resulting in higher mobilities.;Results presented support the use of SiO2 deposited using low temperature atomic layer deposition for improved gate oxides on 4H-SiC MOSFETs given the opportunity for increased nitrogen incorporation. The elevated levels of nitrogen measured in the NO annealed ALD SiO2 sample are unique and are directly attributed to the low temperature ALD process. As such, high peak field effect mobilities can repeatably be achieved with optimization of the nitrided ALD process.
Keywords/Search Tags:ALD, Temperature, Effect, Silicon, Oxide, Carbide, Thermal oxidation, Interface
Related items