Font Size: a A A

Synthesis and characterization of group IV semiconductor nanowires by vapor-liquid-solid growth

Posted on:2006-02-01Degree:Ph.DType:Dissertation
University:The Pennsylvania State UniversityCandidate:Lew, Kok-KeongFull Text:PDF
GTID:1451390008474173Subject:Engineering
Abstract/Summary:
There is currently intense interest in one-dimensional nanostructures, such as nanotubes and nanowires, due to their potential to test fundamental concepts of dimensionality and to serve as building blocks for nanoscale devices. Vapor-liquid-solid (VLS) growth, which is one of the most common fabrication methods, has been used to produce single crystal semiconductor nanowires such as silicon (Si), germanium (Ge), and gallium arsenide (GaAs).; In the VLS growth of Group IV semiconductor nanowires, a metal, such as gold (Au) is used as a catalyst agent to nucleate whisker growth from a Si-containing (silane (SIH4)) or Ge-containing vapor (germane (GeH 4)). Au and Si/Ge form a liquid alloy that has a eutectic temperature of around 360°C, which, upon supersaturation, nucleates the growth of a Si or Ge wire. The goal of this work is to develop a more fundamental understanding of VLS growth kinetics and intentional doping of Group IV semiconductor nanowires in order to better control the properties of the nanowires. The fabrication of p-type and n-type Si nanowires will be studied via the addition of dopant gases such as diborane (B2H 6), trimethylboron (TMB), and phosphine (PH3) during growth. The use of gaseous dopant sources provides more flexibility in growth, particularly for the fabrication of p-n junctions and structures with axial dopant variations (e.g. p+-p- p+).; The study is then extended to fabricate SiGe alloy nanowires by mixing SiH4 and GeH4. Bandgap engineering in Si/SiGe heterostructures can lead to novel devices with improved performance compared to those made entirely of Si. The scientific findings will lead to a better understanding of the fabrication of Si/SiGe axial and radial heterostructure nanowires for functional nanowire device structures, such as heterojunction bipolar transistors (HBTs) and high electron mobility transistors (HEMTs).; Eventually, the central theme of this research is to provide a scientific knowledge base and foundation for the design of Si, Ge, and SiGe nanostructures that will be of importance in nanoscale device applications.
Keywords/Search Tags:IV semiconductor nanowires, Growth
Related items