Font Size: a A A

The development of alkoxy-based sol-gel processing for magnetoresistive manganite thin films

Posted on:2006-09-14Degree:Ph.DType:Dissertation
University:University of Illinois at Urbana-ChampaignCandidate:Clothier, Brent AllenFull Text:PDF
GTID:1451390008952196Subject:Engineering
Abstract/Summary:
This dissertation presents, for the first time, the successful development of an all-alkoxy based, sol-gel process for integrating thin films of magnetoresistive doped-lanthanide manganites onto silicon-based substrates. Crystallization of the requisite perovskite phase at temperatures below 650°C resulted from the incorporation of all-alkoxide precursors, and in particular, Mn[OC(CH 3)3)]2. This latter precursor, when combined with the polyfunctional solvent, 2-methoxyethanol, exhibited high solubility and hydrolytic reactivity. This accomplishment represents a significant new contribution because low carbon-content manganese(II) alkoxides are stable, insoluble coordinate polymers.; Orange and pinkish-orange solutions, also synthesized for the first time, were free from products of aerobic oxidation, and hence, contained no brown discoloration. A partial hydrolysis of h = 0.25 produced a polymeric sol system, conferring both spinnable viscosities and excellent sol longevity. Post-coating hydrolysis via humidified air proved essential to yield transparent, dense, and defect-free amorphous coatings. Conversion into a fine-grain, polycrystalline microstructure occurred above 600°C on platinized-Si(100) and above 650°C on Si(100).; The cubic lattice parameters of the films (i.e., a = ∼ 3.90 A) were in excellent agreement with values published in the literature for bulk, polycrystalline powders. Typical grain sizes started at 10--15 nm, increasing to 20--25 nm by 750°C. For films deposited on Si(100), magnetoresistance was observed in specimens heat treated at 700°C and 750°C, and for platinized-Si(100), 650°C, 700°C, and 750°C. Magnetoresistive response improved with heat-treatment temperature for the more refractory La0.67Ba0.33MnO3 composition. The lead-doped counterpart offered the best property evolution, with TC = 320 K and TIM = 254 K by 750°C on platinized-Si(100). All corresponding transport curves were symmetric, demonstrating clear metal-insulator transitions (i.e., TIM). High resistivities (i.e., ∼ 106 O-cm) were attributed to the fine-grain microstructure. Weak-field cycling between +/-500 Oe yielded symmetrical loops with appreciable linear regions, a highly-desirable characteristic for magnetic sensing applications.
Keywords/Search Tags:Films, Magnetoresistive
Related items