Font Size: a A A

Thermal Decomposition of Methyl Esters in Biodiesel Fuel: Kinetics, Mechanisms and Products

Posted on:2013-07-08Degree:Ph.DType:Dissertation
University:University of CincinnatiCandidate:Chai, MingFull Text:PDF
GTID:1451390008982194Subject:Alternative Energy
Abstract/Summary:
Biodiesel continues to enjoy increasing popularity. However, recent studies on carbonyl compounds emissions from biodiesel fuel are inconclusive. Emissions of carbonyl compounds from petroleum diesel fuels were compared to emissions from pure biodiesel fuels and petroleum-biodiesel blends used in a non-road diesel generator. The concentration of total carbonyl compounds was the highest when the engine was idling. The carbonyl emissions, as well as ozone formation potential, from biodiesel fuel blends were higher than those emitted from petroleum diesel fuel. The sulfur content of diesel fuel and the source of biodiesel fuel were not found to have a significant impact on emissions of carbonyl compounds.;Mechanism parameters of the thermal decomposition of biodiesel-range methyl esters were obtained from the results of thermal gravimetric analysis (TGA). The overall reaction orders are between 0.49 and 0.71 and the energies of activation are between 59.9 and 101.3 kJ/mole. Methyl esters in air have lower activation energies than those in nitrogen. Methyl linoleate has the lowest activation energy, followed by methyl oleate, and methyl stearate.;The pyrolysis and oxidation of the three methyl esters were investigated using a semi-isothermal tubular flow reactor. The profiles of major products versus reaction temperature are presented. In the pyrolysis of methyl stearate, the primary reaction pathway is the decarboxylic reaction at the methyl ester functional group. Methyl oleate's products indicate more reactions on its carbon-carbon double bond. Methyl linoleate shows highest reactivity among the three methyl esters, and 87 products were detected. The oxidation of three methyl esters resulted in more products in all compound classes, and 55, 114, and 127 products were detected, respectively. The oxidation of methyl esters includes decarboxylation on ester group. The methyl ester's carbon chain could be oxidized as a hydrocarbon compound and form oxidized esters and unsaturated esters, which have been observed in methyl ester's oxidation products. The oxidation of methyl stearate, methyl oleate and methyl linoleate produces 16, 28 and 34 types of carbonyl compounds, respectively. The unsaturated methyl ester forms more carbonyl compounds compared to the saturated methyl ester, which indicates the formation of carbonyl compounds might be more related to the unsaturated carbon bond rather than the methyl ester group.;Good agreement between results for total carbon (TC) generally has been found, but the organic and elemental carbon (OC and EC) fractions determined by different methods often disagree. Lack of reference materials has impeded progress on method standardization and understanding method biases. As part of this dissertation, uniform carbon distribution for the filter sets is prepared by using a simply aerosol generation and collection method. The relative standard deviations for the mean TC, OC, and EC results reported by the seven laboratories were below 10%, 11% and 12% (respectively). The method of filter generation is generally applicable and reproducible. Depending on the application, different filter loadings and types of OC materials can be employed. Matched filter sets prepared by this approach can be used for determining the accuracy of various OC-EC methods and thereby contribute to method standardization.
Keywords/Search Tags:Methyl, Biodiesel fuel, Carbonyl compounds, Products, Emissions, Method, Thermal
Related items