Font Size: a A A

Solution-based deposition of ceramic thin films for electronic applications

Posted on:2013-02-27Degree:Ph.DType:Dissertation
University:State University of New York at BinghamtonCandidate:Yu, ShijunFull Text:PDF
GTID:1451390008989518Subject:Materials science
Abstract/Summary:
With the requirement of a low-temperature process which is compatible with flexible electronics, solution-based processes for ceramic thin films have received substantial attention in recent years. In this study, two different variations of solution processing were explored. Liquid phase deposition (LPD) was used to prepare for F-doped SiO2 and F-doped SnO2, and hydrothermal processing was used to prepare ZnO thin films consisting of vertically aligned nanorods.;F-doped SiO2 thin films were developed from supersaturated hydrofluorosilicic acid (H2SiF6) solution with the addition of boric acid (H3BO3). The microstructure dependence of LPD SiO2 films on solution parameters and deposition temperature was systematically investigated. The dielectric constant is lower than that of thermal SiO2, resulting from the fluorine doping. The remarkably low dielectric constant, relatively low leakage current and fairly high elastic modulus make these low temperature processed LPD SiO2 films very promising for an interlayer dielectric for flexible substrates. Using the same LPD method, smooth SnO2 films were deposited on both silicon and glass substrates at 60 ºC through supersaturated solutions of SnF 2 with a concentration range from 10 mM to 40 mM. They consist of nanoscale crystallites and the degree of crystallinity increase with annealing temperature.;A hydrothermal process was employed to deposit ZnO films for energy harvesting devices. A polymer mask was patterned on top of a zinc acetate seed layer to generate a regular array of open holes (200 nm in diameter) using a nanoimprint. Vertically aligned ZnO nanorod arrays were grown on these open holes that expose the seed layer. The morphology and microstrucutre of the nanorods were studied according to chemical composition of the solution. Equimolar reduce of the concentration of ZnAc and HMTA results in decrease in nanorod diameter, as well as in length. The nanorods become thinner and slightly better aligned with decreased HMTA concentration, and thicker rods and faster deposition rate were observed for increased HMTA concentration. Temperature plays a critical role and nanorods gown at 90 ºC seems to have better alignment than those grown at 80 ºC. More process optimization will be needed to achieve the controlled growth of nanorod structures.
Keywords/Search Tags:Thin films, Solution, Process, Deposition, Temperature, LPD
Related items