Font Size: a A A

Tantalum oxide-based plasma-sprayed environmental barrier coatings

Posted on:2005-11-15Degree:Ph.DType:Dissertation
University:Northwestern UniversityCandidate:Weyant, Christopher MFull Text:PDF
GTID:1451390011450035Subject:Engineering
Abstract/Summary:
Energy efficiency in gas turbine engines is linked to the high temperature capabilities of materials used in the hot section of the engine. To facilitate a significant increase in engine efficiency, tough structural ceramics have been developed that can handle the thermo-mechanical stresses that gas turbine components experience. Unfortunately, the high-temperature, high-pressure, and high-velocity combustion gases in a gas turbine contain water vapor and/or hydrogen which have been shown to volatilize the protective silica layer on silicon-based ceramics. This degradation leads to significant surface recession in ceramic gas turbine components.; In order to maintain their structural integrity, an environmental barrier coating (EBC) could be used to protect ceramics from the harsh gas turbine environment. Due to its coefficient of thermal expansion and phase stability at elevated temperatures, tantalum oxide (Ta2O5) was examined as the base material for an air plasma-sprayed EBC on Si3N 4 ceramics. As-sprayed pure Ta2O5 was comprised of both low-temperature beta-Ta2O5 and high-temperature alpha-Ta 2O5 that was quenched into the structure. Residual stress measurements via X-ray diffraction determined the as-sprayed coating to be in tension and extensive vertical macrocracks were observed in the coating. Heat treatments of the pure coating led to conversion of alpha-Ta2 O5 to beta-Ta2O5, conversion of tensile stresses to compressive, localized buckling of the coating, and significant grain growth which caused microcracking in the coating. The pure coating was found to be an inadequate EBC.; Al2O3 was investigated as a solid solution alloying addition designed to enhance the stability of beta-Ta2O 5, and reduce grain growth by slowing grain boundary diffusion. La 2O3 was investigated as an alloying addition designed to form second phase particles which would reduce grain growth through pinning. Al2O3 was successful at both stabilizing beta-Ta 2O5 and reducing grain growth, though AlTaO4 was found to form in the coatings. La2O3 additions led to the formation of LaTa7O19 which also contributed to grain growth reduction. Residual stresses in the alloyed coatings were generally found to be tensile. Microcracks were not observed in coatings that were alloyed with both Al2O3 and La2O3 with the most promising alloy being Ta2O5 + 1.5 wt.% Al 2O3 + 1.5 wt.% La2O3.
Keywords/Search Tags:Gas turbine, Coating, Grain growth
Related items