Font Size: a A A

Loi constitutive chimioplastique pour le beton expose aux hautes temperatures

Posted on:2014-05-28Degree:Ph.DType:Dissertation
University:Ecole Polytechnique, Montreal (Canada)Candidate:Hammoud, RabahFull Text:PDF
GTID:1452390008950577Subject:Applied mechanics
Abstract/Summary:
Concrete is the most widely used construction material in the world. Even though it has been used for several centuries, its behavior to high temperature remains to be understood. In the light of recent extreme events, including accidents, and arson, special attention has been focused on the performance of concrete in the fire safety assessment of buildings and tunnels. Fire represents one of the most severe conditions encountered during the life-time of a structure. Concrete exposed to high temperature can significantly jeopardize the structural integrity and load bearing capacity of the structure.;Spalling of concrete remains one of the main issues to be addressed in the case of fire in buildings and tunnels. Successful modeling of this phenomenon depends not only on the accurate prediction of the temperature distribution through structural concrete but also on its mechanical response to the heating and boundaries restrains conditions and the migration of moisture and associated pore pressures. Therefore, it is necessary to develop a reliable formulation of concrete with all required information to understand its behavior during and after exposure to elevated temperature. It is also necessary to properly assess the effects of thermal degradation in order to develop predictive tools and validate design codes. Many structural problems can be adequately worthy by an elastoplastic model.;The ultimate goal of this study is the development of a new constitutive model under a chemoplastic framework. To do this, an experimental program is carried out. The purpose of this program is twofold. First, it is essential to calibrate the proposed constitutive law that will be developed, and, second, for defining an inverse a problem. Usually, uniaxial and triaxial tests, conducted with confining pressure varied between 1.3 and 24 MPa and a temperature up to 700°C, allow us to identify the constitutive law parameters. This law reproduces the reduced field strength due to degradation of exothermic origin. This experimental program puts emphasis on the fragile nature of the preheated concrete and demonstrates the non-applicability of two failure criteria often used in engineering calculation. An alternative is proposed and well-tested.;Indeed, exposing the concrete to high temperature results in irreversible loss of stiffness as well as a loss of decohesion strength. These losses are, typically, expressed through semi-empirical relationships of the mechanical properties with temperature. Unfortunately, these relationships are inadequate because the direct impact of this degradation, on the macroscopic scale, can result in a dependency relationship between the elastic properties and the hydrates mass. Therefore, unlike traditional methods using conventional elasto-plastic models and adjusting certain parameters with local temperature, the proposed constitutive law that incorporates a function of dehydration similar to the softening index in chemo-plastics gives good results. An Etse and Willam similar criterion is used and modified for the occasion. Hardening and softening mechanisms are then needed to expand and contract the loading surface for defining the strength of the concrete on a wide range of dehydration processes. The direction and magnitude of a permanent deformation, core of the inelastic domain, are defined through the development of non-associated chemoplastic potential and new curve of ductility. The influence of hydrostatic pressure (dilatancy) and dehydration on the concrete behavior are taken into account in our model.;The model is implemented in the Matlab(c) code. Strains and stresses generated in the concrete are now accurately predicted. To illustrate the capabilities of the developed model to predict the complex behavior of concrete exposed to high temperature, simulations are performed through numerical loading paths scenarios. The model is able to accurately reproduce all the experimental data.
Keywords/Search Tags:Temperature, Concrete, Constitutive, Model, Used
Related items